State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.
Acc Chem Res. 2013 Nov 19;46(11):2355-64. doi: 10.1021/ar300224u. Epub 2013 Jun 3.
Solar fuel production through artificial photosynthesis may be a key to generating abundant and clean energy, thus addressing the high energy needs of the world's expanding population. As the crucial components of photosynthesis, the artificial photosynthetic system should be composed of a light harvester (e.g., semiconductor or molecular dye), a reduction cocatalyst (e.g., hydrogenase mimic, noble metal), and an oxidation cocatalyst (e.g., photosystem II mimic for oxygen evolution from water oxidation). Solar fuel production catalyzed by an artificial photosynthetic system starts from the absorption of sunlight by the light harvester, where charge separation takes place, followed by a charge transfer to the reduction and oxidation cocatalysts, where redox reaction processes occur. One of the most challenging problems is to develop an artificial photosynthetic solar fuel production system that is both highly efficient and stable. The assembly of cocatalysts on the semiconductor (light harvester) not only can facilitate the charge separation, but also can lower the activation energy or overpotential for the reactions. An efficient light harvester loaded with suitable reduction and oxidation cocatalysts is the key for high efficiency of artificial photosynthetic systems. In this Account, we describe our strategy of hybrid photocatalysts using semiconductors as light harvesters with biomimetic complexes as molecular cocatalysts to construct efficient and stable artificial photosynthetic systems. We chose semiconductor nanoparticles as light harvesters because of their broad spectral absorption and relatively robust properties compared with a natural photosynthesis system. Using biomimetic complexes as cocatalysts can significantly facilitate charge separation via fast charge transfer from the semiconductor to the molecular cocatalysts and also catalyze the chemical reactions of solar fuel production. The hybrid photocatalysts supply us with a platform to study the photocatalytic mechanisms of H2/O2 evolution and CO2 reduction at the molecular level and to bridge natural and artificial photosynthesis. We demonstrate the feasibility of the hybrid photocatalyst, biomimetic molecular cocatalysts, and semiconductor light harvester for artificial photosynthesis and therefore provide a promising approach for rational design and construction of highly efficient and stable artificial photosynthetic systems.
通过人工光合作用生产太阳能燃料可能是产生丰富、清洁能源的关键,从而满足世界不断增长的人口对能源的高需求。作为光合作用的关键组成部分,人工光合作用系统应由光收集器(例如半导体或分子染料)、还原助催化剂(例如模拟氢化酶的物质、贵金属)和氧化助催化剂(例如模拟光合作用 II 从水中氧化产生氧气的物质)组成。人工光合作用系统催化的太阳能燃料生产始于光收集器吸收阳光,在那里发生电荷分离,然后电荷转移到还原和氧化助催化剂,在那里发生氧化还原反应过程。最具挑战性的问题之一是开发高效且稳定的人工光合作用太阳能燃料生产系统。助催化剂在半导体(光收集器)上的组装不仅可以促进电荷分离,还可以降低反应的活化能或过电势。高效的光收集器负载合适的还原和氧化助催化剂是提高人工光合作用系统效率的关键。在本报告中,我们描述了使用半导体作为光收集器并结合仿生配合物作为分子助催化剂构建高效和稳定的人工光合作用系统的混合光催化剂策略。我们选择半导体纳米颗粒作为光收集器,因为它们具有比天然光合作用系统更宽的光谱吸收和相对稳健的特性。使用仿生配合物作为助催化剂可以通过从半导体快速转移电荷到分子助催化剂来显著促进电荷分离,并催化太阳能燃料生产的化学反应。混合光催化剂为我们提供了一个平台,用于在分子水平上研究 H2/O2 产生和 CO2 还原的光催化机制,并弥合天然和人工光合作用之间的差距。我们证明了混合光催化剂、仿生分子助催化剂和半导体光收集器在人工光合作用中的可行性,因此为合理设计和构建高效、稳定的人工光合作用系统提供了一种很有前途的方法。