Laboratoire de Physique des Lasers, Atomes et Molécules (CNRS, UMR 8523), IRCICA (USR CNRS 3380), CERLA (FR CNRS 2416), Bâtiment P5, Université Lille 1-Sciences et Technologies, Villeneuve d'Ascq Cedex, 59655, France.
Nanoscale Res Lett. 2013 Jun 6;8(1):266. doi: 10.1186/1556-276X-8-266.
Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows extracting the best experimental conditions to obtain an efficient particle production and to avoid stability or oxidation problems.
在亚微米尺度上实现透明介质中线性和非线性光学性质的空间定位仍然是下一代光子器件的挑战。激光辐照技术一直被认为可以在纳米尺度上对物质进行结构处理,但将其与掺杂方法相结合,使得在不同的硅酸盐基质中生成几种类型的纳米晶的局部生长成为可能。本文总结了我们小组最近的工作,所研究的纳米粒子要么由金属(金)要么由硫属半导体(CdS、PbS)制成,在不同的激光辐照下,在前驱体浸渍的多孔气凝胶中生长。这篇综述与我们在同类型基质中对银纳米晶的新结果相关。结果表明,根据所使用的激光,颗粒可以在样品表面附近或二氧化硅基质内部深处形成。根据激光、前体和基质的不同,可以提出光热和/或光化学机制来解释纳米颗粒的生长。一个引人注目的结果是,由于电子从基质本身的热扭曲或由于飞秒激光光通过还原剂添加剂的多光子吸收,相应纳米颗粒的生产所必需的金属盐还原可以有效地发生。使用超短脉冲也可以产生非常局部的半导体量子点,但由于单光子吸收,PbS 纳米颗粒的生长速度比 CdS 颗粒快,而这种更高的效率被氧化的敏感性所抵消。在大多数反应效率高的情况下,都得到了大于孔的颗粒,这表明通过相互连接的孔隙的物质快速扩散可以改变基质本身。基于我们在这些技术方面的经验,我们比较了多孔二氧化硅气凝胶中激光诱导纳米晶生长的几个例子,这些例子可以提取出获得高效颗粒生成和避免稳定性或氧化问题的最佳实验条件。