Suppr超能文献

逆 Odds 比值加权估计在因果中介分析中的应用。

Inverse odds ratio-weighted estimation for causal mediation analysis.

机构信息

Department of Epidemiology, Harvard University, Boston, MA, U.S.A.; Department of Biostatistics, Harvard University, Boston, MA, U.S.A.

出版信息

Stat Med. 2013 Nov 20;32(26):4567-80. doi: 10.1002/sim.5864. Epub 2013 Jun 7.

Abstract

An important scientific goal of studies in the health and social sciences is increasingly to determine to what extent the total effect of a point exposure is mediated by an intermediate variable on the causal pathway between the exposure and the outcome. A causal framework has recently been proposed for mediation analysis, which gives rise to new definitions, formal identification results and novel estimators of direct and indirect effects. In the present paper, the author describes a new inverse odds ratio-weighted approach to estimate so-called natural direct and indirect effects. The approach, which uses as a weight the inverse of an estimate of the odds ratio function relating the exposure and the mediator, is universal in that it can be used to decompose total effects in a number of regression models commonly used in practice. Specifically, the approach may be used for effect decomposition in generalized linear models with a nonlinear link function, and in a number of other commonly used models such as the Cox proportional hazards regression for a survival outcome. The approach is simple and can be implemented in standard software provided a weight can be specified for each observation. An additional advantage of the method is that it easily incorporates multiple mediators of a categorical, discrete or continuous nature.

摘要

健康和社会科学研究的一个重要科学目标是越来越多地确定暴露点的总效应在暴露与结果之间的因果途径上通过中间变量来介导的程度。最近提出了一种因果框架用于中介分析,这产生了新的定义、形式识别结果和直接和间接效应的新估计量。在本文中,作者描述了一种新的逆优势比加权方法来估计所谓的自然直接和间接效应。该方法使用与暴露和中介物相关的优势比函数的倒数作为权重,它是通用的,因为它可以用于分解实践中常用的许多回归模型中的总效应。具体来说,该方法可用于具有非线性链接函数的广义线性模型中的效应分解,以及其他一些常用模型,如生存结果的 Cox 比例风险回归。该方法简单,可以在标准软件中实现,只要为每个观察值指定一个权重。该方法的另一个优点是它可以轻松地包含分类、离散或连续性质的多个中介。

相似文献

1
Inverse odds ratio-weighted estimation for causal mediation analysis.
Stat Med. 2013 Nov 20;32(26):4567-80. doi: 10.1002/sim.5864. Epub 2013 Jun 7.
2
Practical guidance for conducting mediation analysis with multiple mediators using inverse odds ratio weighting.
Am J Epidemiol. 2015 Mar 1;181(5):349-56. doi: 10.1093/aje/kwu278. Epub 2015 Feb 17.
3
Distribution-free mediation analysis for nonlinear models with confounding.
Epidemiology. 2012 Nov;23(6):879-88. doi: 10.1097/EDE.0b013e31826c2bb9.
4
On causal mediation analysis with a survival outcome.
Int J Biostat. 2011;7(1):Article 33. doi: 10.2202/1557-4679.1351. Epub 2011 Sep 2.
5
Survival mediation analysis with the death-truncated mediator: The completeness of the survival mediation parameter.
Stat Med. 2021 Jul 30;40(17):3953-3974. doi: 10.1002/sim.9008. Epub 2021 Jun 10.
9
Mediation analysis for common binary outcomes.
Stat Med. 2019 Feb 20;38(4):512-529. doi: 10.1002/sim.7945. Epub 2018 Sep 6.
10
Causal Mediation Analysis for the Cox Proportional Hazards Model with a Smooth Baseline Hazard Estimator.
J R Stat Soc Ser C Appl Stat. 2017 Aug;66(4):741-757. doi: 10.1111/rssc.12188. Epub 2016 Oct 19.

引用本文的文献

1
Social Isolation Is Associated With the Acceleration of Death and Incident Cardiovascular Disease in Adults With Chronic Kidney Disease.
J Am Heart Assoc. 2025 Jun 3;14(11):e038951. doi: 10.1161/JAHA.124.038951. Epub 2025 May 22.
2
Body Mass Index, Comorbidities, and Ambulatory Care Visits: The REGARDS Study.
J Am Heart Assoc. 2025 Apr;14(7):e037034. doi: 10.1161/JAHA.124.037034. Epub 2025 Mar 21.
6
Examining Healthy Lifestyles as a Mediator of the Association Between Socially Determined Vulnerabilities and Incident Heart Failure.
Circ Cardiovasc Qual Outcomes. 2025 Mar;18(3):e011107. doi: 10.1161/CIRCOUTCOMES.124.011107. Epub 2025 Jan 16.
10
The association of leptin and incident hypertension in the reasons for geographic and racial differences in stroke (REGARDS) cohort.
J Hum Hypertens. 2024 Dec;38(12):836-843. doi: 10.1038/s41371-024-00963-w. Epub 2024 Oct 1.

本文引用的文献

2
On doubly robust estimation in a semiparametric odds ratio model.
Biometrika. 2010 Mar;97(1):171-180. doi: 10.1093/biomet/asp062. Epub 2009 Dec 8.
3
Targeted maximum likelihood estimation of natural direct effects.
Int J Biostat. 2012 Jan 6;8(1):/j/ijb.2012.8.issue-1/1557-4679.1361/1557-4679.1361.xml. doi: 10.2202/1557-4679.1361.
4
The causal mediation formula--a guide to the assessment of pathways and mechanisms.
Prev Sci. 2012 Aug;13(4):426-36. doi: 10.1007/s11121-011-0270-1.
5
On causal mediation analysis with a survival outcome.
Int J Biostat. 2011;7(1):Article 33. doi: 10.2202/1557-4679.1351. Epub 2011 Sep 2.
6
Odds ratios for mediation analysis for a dichotomous outcome.
Am J Epidemiol. 2010 Dec 15;172(12):1339-48. doi: 10.1093/aje/kwq332. Epub 2010 Oct 29.
7
A general approach to causal mediation analysis.
Psychol Methods. 2010 Dec;15(4):309-34. doi: 10.1037/a0020761.
8
Alternative assumptions for the identification of direct and indirect effects.
Epidemiology. 2011 Nov;22(6):753-64. doi: 10.1097/EDE.0b013e3181c311b2.
9
Marginal structural models for the estimation of direct and indirect effects.
Epidemiology. 2009 Jan;20(1):18-26. doi: 10.1097/EDE.0b013e31818f69ce.
10
Estimation of direct causal effects.
Epidemiology. 2006 May;17(3):276-84. doi: 10.1097/01.ede.0000208475.99429.2d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验