Yang Jian, Lee Sang Hong, Goddard Michael E, Visscher Peter M
University of Queensland Diamantina Institute, Princess Alexandra Hospital, University of Queensland, Brisbane, QLD, Australia.
Methods Mol Biol. 2013;1019:215-36. doi: 10.1007/978-1-62703-447-0_9.
Estimating genetic variance is traditionally performed using pedigree analysis. Using high-throughput DNA marker data measured across the entire genome it is now possible to estimate and partition genetic variation from population samples. In this chapter, we introduce methods and a software tool called Genome-wide Complex Trait Analysis (GCTA) to estimate genomic relationships between pairs of conventionally unrelated individuals using genome-wide single nucleotide polymorphism (SNP) data, to estimate variance explained by all SNPs simultaneously on genomic or chromosomal segments or over the whole genome, and to perform a joint and conditional multiple SNPs association analysis using summary statistics from a meta-analysis of genome-wide association studies and linkage disequilibrium between SNPs estimated from a reference sample.
传统上,遗传方差的估计是通过系谱分析来进行的。利用在整个基因组中测量的高通量DNA标记数据,现在可以从群体样本中估计和划分遗传变异。在本章中,我们介绍了一些方法以及一种名为全基因组复杂性状分析(GCTA)的软件工具,用于使用全基因组单核苷酸多态性(SNP)数据估计传统上不相关个体对之间的基因组关系,同时估计基因组或染色体片段上或整个基因组中所有SNP解释的方差,并使用来自全基因组关联研究荟萃分析的汇总统计数据以及从参考样本估计的SNP之间的连锁不平衡进行联合和条件多位点SNP关联分析。