Laboratoire de Chimie Bactérienne, UPR-CNRS 9043, Institut de Microbiologie de la Méditerranée, 31 chemin Joseph Aiguier, 13402, Marseille, Cedex 20, France. Aix-Marseille Université, Marseille, France.
Environ Microbiol Rep. 2012 Dec;4(6):571-86. doi: 10.1111/j.1758-2229.2011.00300.x. Epub 2011 Nov 3.
Arsenic is a notorious poison classified as a carcinogen, a teratogen and a clastogen that ranks number one on the Environmental Protection Agency's priority list of drinking water contaminants. It is ubiquitous and relatively abundant in the Earth's crust. Its mobilization in waters by weathering, volcanic, anthropogenic or biological activities represents a major hazard to public health, exemplified in India and Bangladesh where 50 million people are acutely at risk. Since basically the origin of life, microorganisms have been exposed to this toxic compound and have evolved a variety of resistance mechanisms, such as extracellular precipitation, chelation, intracellular sequestration, active extrusion from the cell or biochemical transformation (redox or methylation). Arsenic efflux systems are widespread and are found in nearly all organisms. Some microorganisms are also able to utilize this metalloid as a metabolic energy source through either arsenite oxidation or arsenate reduction. The energy metabolism involving redox reactions of arsenic has been suggested to have evolved during early life on Earth. This review highlights the different systems evolved by prokaryotes to cope with arsenic and how they participate in its biogeochemical cycle.
砷是一种臭名昭著的毒药,被归类为致癌物、致畸物和致裂物,在环境保护署(EPA)优先控制的饮用水污染物名单中排名第一。它在地壳中无处不在且相对丰富。由于风化、火山、人为或生物活动,它在水中的迁移对公共健康构成了重大威胁,印度和孟加拉国就是明证,那里有 5000 万人面临严重风险。自生命起源以来,微生物一直暴露在这种有毒化合物中,并进化出多种抗性机制,如细胞外沉淀、螯合、细胞内隔离、主动从细胞中排出或生化转化(氧化还原或甲基化)。砷外排系统广泛存在于几乎所有生物体中。一些微生物还可以通过亚砷酸盐氧化或砷酸盐还原将这种类金属作为代谢能源加以利用。有人提出,涉及砷的氧化还原反应的能量代谢可能是在地球早期生命中进化而来的。这篇综述强调了原核生物为应对砷而进化出的不同系统,以及它们如何参与砷的生物地球化学循环。