Suppr超能文献

丘脑底核途径和胆碱能控制的目标导向行动:在纹状体中交织新的与现有的学习。

The thalamostriatal pathway and cholinergic control of goal-directed action: interlacing new with existing learning in the striatum.

机构信息

Brain & Mind Research Institute, University of Sydney, Camperdown, NSW 2050, Australia.

出版信息

Neuron. 2013 Jul 10;79(1):153-66. doi: 10.1016/j.neuron.2013.04.039. Epub 2013 Jun 13.

Abstract

The capacity for goal-directed action depends on encoding specific action-outcome associations, a learning process mediated by the posterior dorsomedial striatum (pDMS). In a changing environment, plasticity has to remain flexible, requiring interference between new and existing learning to be minimized, yet it is not known how new and existing learning are interlaced in this way. Here we investigated the role of the thalamostriatal pathway linking the parafascicular thalamus (Pf) with cholinergic interneurons (CINs) in the pDMS in this process. Removing the excitatory input from Pf to the CINs was found to reduce the firing rate and intrinsic activity of these neurons and produced an enduring deficit in goal-directed learning after changes in the action-outcome contingency. Disconnection of the Pf-pDMS pathway produced similar behavioral effects. These data suggest that CINs reduce interference between new and existing learning, consistent with claims that the thalamostriatal pathway exerts state control over learning-related plasticity.

摘要

目标导向行为的能力取决于对特定动作-结果关联的编码,这是一个由后背侧纹状体(pDMS)介导的学习过程。在不断变化的环境中,可塑性必须保持灵活,需要最小化新的和现有的学习之间的干扰,但目前尚不清楚新的和现有的学习是如何以这种方式交织在一起的。在这里,我们研究了连接旁束状核(Pf)与胆碱能中间神经元(CIN)的丘脑纹状体通路在这个过程中的作用。研究发现,去除 Pf 到 CIN 的兴奋性输入会降低这些神经元的放电率和固有活性,并在动作-结果关联发生变化后导致目标导向学习的持久缺陷。Pf-pDMS 通路的断开也产生了类似的行为效应。这些数据表明,CIN 减少了新的和现有的学习之间的干扰,这与丘脑纹状体通路对与学习相关的可塑性施加状态控制的说法一致。

相似文献

2
Thalamic Control of Dorsomedial Striatum Regulates Internal State to Guide Goal-Directed Action Selection.
J Neurosci. 2017 Mar 29;37(13):3721-3733. doi: 10.1523/JNEUROSCI.3860-16.2017. Epub 2017 Feb 27.
4
Cholinergic Interneurons Use Orbitofrontal Input to Track Beliefs about Current State.
J Neurosci. 2016 Jun 8;36(23):6242-57. doi: 10.1523/JNEUROSCI.0157-16.2016.
5
Aging-Related Dysfunction of Striatal Cholinergic Interneurons Produces Conflict in Action Selection.
Neuron. 2016 Apr 20;90(2):362-73. doi: 10.1016/j.neuron.2016.03.006.
6
8
Prefrontal Corticostriatal Disconnection Blocks the Acquisition of Goal-Directed Action.
J Neurosci. 2018 Jan 31;38(5):1311-1322. doi: 10.1523/JNEUROSCI.2850-17.2017. Epub 2018 Jan 4.
9
The Bilateral Prefronto-striatal Pathway Is Necessary for Learning New Goal-Directed Actions.
Curr Biol. 2018 Jul 23;28(14):2218-2229.e7. doi: 10.1016/j.cub.2018.05.028. Epub 2018 Jun 28.
10
Amygdala-Cortical Control of Striatal Plasticity Drives the Acquisition of Goal-Directed Action.
Curr Biol. 2020 Nov 16;30(22):4541-4546.e5. doi: 10.1016/j.cub.2020.08.090. Epub 2020 Oct 1.

引用本文的文献

1
Ethanol inhibits dorsomedial striatum acetylcholine release.
bioRxiv. 2025 Jun 3:2025.05.30.656893. doi: 10.1101/2025.05.30.656893.
5
Striatal function scrutinized through the PAN-TAN-FSI triumvirate.
Front Cell Neurosci. 2025 Mar 25;19:1572657. doi: 10.3389/fncel.2025.1572657. eCollection 2025.
6
Management of freezing of gait - mechanism-based practical recommendations.
Nat Rev Neurol. 2025 Apr 1. doi: 10.1038/s41582-025-01079-6.
8
Dissociable roles of distinct thalamic circuits in learning reaches to spatial targets.
Nat Commun. 2025 Mar 26;16(1):2962. doi: 10.1038/s41467-025-58143-4.
9
Striatal cell-type specific stability and reorganization underlying agency and habit.
bioRxiv. 2025 Jan 26:2025.01.26.634924. doi: 10.1101/2025.01.26.634924.
10
Dynamic responses of striatal cholinergic interneurons control behavioral flexibility.
Sci Adv. 2024 Dec 20;10(51):eadn2446. doi: 10.1126/sciadv.adn2446. Epub 2024 Dec 18.

本文引用的文献

1
Striatal cholinergic interneurons display activity-related phosphorylation of ribosomal protein S6.
PLoS One. 2012;7(12):e53195. doi: 10.1371/journal.pone.0053195. Epub 2012 Dec 28.
2
Heterogeneous properties of central lateral and parafascicular thalamic synapses in the striatum.
J Physiol. 2013 Jan 1;591(1):257-72. doi: 10.1113/jphysiol.2012.245233. Epub 2012 Oct 29.
3
Reward prediction error signaling in posterior dorsomedial striatum is action specific.
J Neurosci. 2012 Jul 25;32(30):10296-305. doi: 10.1523/JNEUROSCI.0832-12.2012.
4
Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons.
Neuron. 2012 Jul 12;75(1):58-64. doi: 10.1016/j.neuron.2012.04.038.
5
Cholinergic modulation of cognitive processing: insights drawn from computational models.
Front Behav Neurosci. 2012 Jun 13;6:24. doi: 10.3389/fnbeh.2012.00024. eCollection 2012.
6
Muscarinic modulation of striatal function and circuitry.
Handb Exp Pharmacol. 2012(208):223-41. doi: 10.1007/978-3-642-23274-9_10.
7
Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks.
Science. 2011 Dec 16;334(6062):1569-73. doi: 10.1126/science.1211095. Epub 2011 Nov 10.
8
Haloperidol regulates the state of phosphorylation of ribosomal protein S6 via activation of PKA and phosphorylation of DARPP-32.
Neuropsychopharmacology. 2011 Nov;36(12):2561-70. doi: 10.1038/npp.2011.144. Epub 2011 Aug 3.
9
Molecular substrates of action control in cortico-striatal circuits.
Prog Neurobiol. 2011 Sep 15;95(1):1-13. doi: 10.1016/j.pneurobio.2011.05.007. Epub 2011 Jun 17.
10
Dopamine signaling in dorsal versus ventral striatum: the dynamic role of cholinergic interneurons.
Front Syst Neurosci. 2011 Mar 3;5:11. doi: 10.3389/fnsys.2011.00011. eCollection 2011.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验