Department of Biomedical Engineering and Center for Materials Innovation, Washington University, Campus Box 1097, One Brookings Dr., St. Louis, MO 63130, USA.
Biomaterials. 2013 Sep;34(28):6559-71. doi: 10.1016/j.biomaterials.2013.05.050. Epub 2013 Jun 14.
Direct reprogramming strategies enable rapid conversion of somatic cells to cardiomyocytes or cardiomyocyte-like cells without going through the pluripotent state. A recently described protocol couples Yamanaka factor induction with pluripotency inhibition followed by BMP4 treatment to achieve rapid reprogramming of mouse fibroblasts to beating cardiomyocyte-like cells. The original study was performed using Matrigel-coated tissue culture polystyrene (TCPS), a stiff material that also non-specifically adsorbs serum proteins. Protein adsorption-resistant poly(ethylene glycol) (PEG) materials can be covalently modified to present precise concentrations of adhesion proteins or peptides without the unintended effects of non-specifically adsorbed proteins. Here, we describe an improved protocol that incorporates custom-engineered materials. We first reproduced the Efe et al. protocol on Matrigel-coated TCPS (the original material), reprogramming adult mouse tail-tip mouse fibroblasts (TTF) and mouse embryonic fibroblasts (MEF) to cardiomyocyte-like cells that demonstrated striated sarcomeric α-actinin staining, spontaneous calcium transients, and visible beating. We then designed poly(ethylene glycol) culture substrates to promote MEF adhesion via laminin and RGD-binding integrins. PEG hydrogels improved proliferation and reprogramming efficiency (evidenced by beating patch number and area, gene expression, and flow cytometry), yielding almost twice the number of sarcomeric α-actinin positive cardiomyocyte-like cells as the originally described substrate. These results illustrate that cellular reprogramming may be enhanced using custom-engineered materials.
直接重编程策略使体细胞能够快速转化为心肌细胞或心肌细胞样细胞,而无需经历多能状态。最近描述的一种方案将 Yamanaka 因子诱导与多能性抑制相结合,然后用 BMP4 处理,以实现快速重编程小鼠成纤维细胞为搏动的心肌细胞样细胞。最初的研究是在涂有基质胶的组织培养聚苯乙烯(TCPS)上进行的,TCPS 是一种坚硬的材料,也会非特异性地吸附血清蛋白。蛋白质吸附抵抗性聚乙二醇(PEG)材料可以通过共价修饰来呈现精确浓度的粘附蛋白或肽,而不会产生非特异性吸附蛋白的意外影响。在这里,我们描述了一个包含定制工程材料的改进方案。我们首先在涂有基质胶的 TCPS (原始材料)上重现了 Efe 等人的方案,将成年小鼠尾尖成纤维细胞(TTF)和小鼠胚胎成纤维细胞(MEF)重编程为具有条纹肌节肌动蛋白染色、自发钙瞬变和可见搏动的心肌细胞样细胞。然后,我们设计了聚乙二醇培养底物,通过层粘连蛋白和 RGD 结合整联蛋白促进 MEF 黏附。PEG 水凝胶提高了增殖和重编程效率(通过搏动斑的数量和面积、基因表达和流式细胞术来证明),产生的具有条纹肌节肌动蛋白阳性的心肌细胞样细胞数量几乎是最初描述的底物的两倍。这些结果表明,使用定制工程材料可以增强细胞重编程。