Suppr超能文献

鸣禽科回声定位中目标范围计算的异性谐波策略的演变。

Evolution of the heteroharmonic strategy for target-range computation in the echolocation of Mormoopidae.

机构信息

Research Group of Bioacoustics and Neuroethology, Department of Animal and Human Biology, Faculty of Biology, Havana University Havana, Cuba.

出版信息

Front Physiol. 2013 Jun 12;4:141. doi: 10.3389/fphys.2013.00141. eCollection 2013.

Abstract

Echolocating bats use the time elapsed from biosonar pulse emission to the arrival of echo (defined as echo-delay) to assess target-distance. Target-distance is represented in the brain by delay-tuned neurons that are classified as either "heteroharmonic" or "homoharmormic." Heteroharmonic neurons respond more strongly to pulse-echo pairs in which the timing of the pulse is given by the fundamental biosonar harmonic while the timing of echoes is provided by one (or several) of the higher order harmonics. On the other hand, homoharmonic neurons are tuned to the echo delay between similar harmonics in the emitted pulse and echo. It is generally accepted that heteroharmonic computations are advantageous over homoharmonic computations; i.e., heteroharmonic neurons receive information from call and echo in different frequency-bands which helps to avoid jamming between pulse and echo signals. Heteroharmonic neurons have been found in two species of the family Mormoopidae (Pteronotus parnellii and Pteronotus quadridens) and in Rhinolophus rouxi. Recently, it was proposed that heteroharmonic target-range computations are a primitive feature of the genus Pteronotus that was preserved in the evolution of the genus. Here, we review recent findings on the evolution of echolocation in Mormoopidae, and try to link those findings to the evolution of the heteroharmonic computation strategy (HtHCS). We stress the hypothesis that the ability to perform heteroharmonic computations evolved separately from the ability of using long constant-frequency echolocation calls, high duty cycle echolocation, and Doppler Shift Compensation. Also, we present the idea that heteroharmonic computations might have been of advantage for categorizing prey size, hunting eared insects, and living in large conspecific colonies. We make five testable predictions that might help future investigations to clarify the evolution of the heteroharmonic echolocation in Mormoopidae and other families.

摘要

回声定位蝙蝠利用生物声纳脉冲发射与回声到达之间的时间延迟(定义为回声延迟)来估计目标距离。目标距离在大脑中由延迟调谐神经元表示,这些神经元分为“异谐波”或“同谐波”。异谐波神经元对脉冲-回声对的响应更强,其中脉冲的时间由基本生物声纳谐波给出,而回声的时间由一个(或多个)更高阶谐波给出。另一方面,同谐波神经元调谐到发射脉冲和回波中相似谐波之间的回声延迟。一般认为,异谐波计算比同谐波计算更有优势;也就是说,异谐波神经元从叫声和回声中接收来自不同频带的信息,这有助于避免脉冲和回波信号之间的干扰。在两个 Mormoopidae 科的物种(Pteronotus parnellii 和 Pteronotus quadridens)和 Rhinolophus rouxi 中发现了异谐波神经元。最近,有人提出,异谐波目标距离计算是 Mormoopidae 家族的原始特征,在该属的进化中得到了保留。在这里,我们回顾了 Mormoopidae 中回声定位进化的最新发现,并试图将这些发现与异谐波计算策略(HtHCS)的进化联系起来。我们强调了这样一种假设,即执行异谐波计算的能力是从使用长恒定频率回声定位叫声、高占空比回声定位和多普勒频移补偿的能力中独立进化而来的。此外,我们提出了这样一种观点,即异谐波计算可能有利于对猎物大小进行分类、捕猎有耳昆虫和生活在大型同种聚居地。我们提出了五个可检验的预测,这可能有助于未来的研究澄清 Mormoopidae 和其他科的异谐波回声定位的进化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/064c/3679472/903dfcf34be2/fphys-04-00141-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验