Suppr超能文献

空位协同作用促进超薄氯氧化铋纳米片的太阳能驱动光催化活性。

Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets.

机构信息

Hefei National Laboratory for Physical Sciences at the Microscale, University of Science & Technology of China, Hefei, Anhui, 230026, PR China.

出版信息

J Am Chem Soc. 2013 Jul 17;135(28):10411-7. doi: 10.1021/ja402956f. Epub 2013 Jul 3.

Abstract

Crystal facet engineering of semiconductors is of growing interest and an important strategy for fine-tuning solar-driven photocatalytic activity. However, the primary factor in the exposed active facets that determines the photocatalytic property is still elusive. Herein, we have experimentally achieved high solar photocatalytic activity in ultrathin BiOCl nanosheets with almost fully exposed active {001} facets and provide some new and deep-seated insights into how the defects in the exposed active facets affect the solar-driven photocatalytic property. As the thickness of the nanosheets reduces to atomic scale, the predominant defects change from isolated defects V(Bi)‴ to triple vacancy associates V(Bi)‴V(O)••V(Bi)‴, which is unambiguously confirmed by the positron annihilation spectra. By virtue of the synergic advantages of enhanced adsorption capability, effective separation of electron–hole pairs and more reductive photoexcited electrons benefited from the V(Bi)‴V(O)••V(Bi)‴ vacancy associates, the ultrathin BiOCl nanosheets show significantly promoted solar-driven photocatalytic activity, even with extremely low photocatalyst loading. The finding of the existence of distinct defects (different from those in bulks) in ultrathin nanosheets undoubtedly leads to new possibilities for photocatalyst design using quasi-two-dimensional materials with high solar-driven photocatalytic activity.

摘要

半导体的晶面工程越来越受到关注,是精细调控太阳能驱动光催化活性的重要策略。然而,暴露的活性面中决定光催化性能的主要因素仍难以捉摸。在此,我们通过实验在几乎完全暴露的活性{001}面的超薄 BiOCl 纳米片中实现了高光太阳能催化活性,并提供了一些关于暴露的活性面中缺陷如何影响太阳能驱动光催化性能的新的、深刻的见解。随着纳米片厚度减小到原子尺度,主要缺陷从孤立的 V(Bi)‴缺陷转变为三重空位缔合物 V(Bi)‴V(O)••V(Bi)‴,正电子湮没谱明确证实了这一点。由于增强的吸附能力、电子-空穴对有效分离以及更多还原光激发电子的协同优势,得益于 V(Bi)‴V(O)••V(Bi)‴空位缔合物,超薄 BiOCl 纳米片表现出显著提高的太阳能驱动光催化活性,即使在极低的光催化剂负载下也是如此。在超薄纳米片中发现存在明显的缺陷(与体相中的缺陷不同),无疑为使用具有高光太阳能驱动光催化活性的准二维材料设计光催化剂提供了新的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验