BRGM, ISTO UMR 7327, 45060 Orléans, France.
J Colloid Interface Sci. 2013 Sep 15;406:75-85. doi: 10.1016/j.jcis.2013.05.034. Epub 2013 Jun 5.
Titanium dioxide nanoparticles (TiO2 NPs) are extensively used in consumer products. The release of these NPs into aquatic environments raises the question of their possible risks to the environment and human health. The magnitude of the threat may depend on whether TiO2 NPs are aggregated or dispersed. Currently, limited information is available on this subject. A new approach based on DLVO theory is proposed to describe aggregation kinetics of TiO2 NPs in aqueous dispersions. It has the advantage of using zeta potentials directly calculated by an electrostatic surface complexation model whose parameters are calibrated by ab initio calculations, crystallographic studies, potentiometric titration and electrophoretic mobility experiments. Indeed, the conversion of electrophoretic mobility measurements into zeta potentials is very complex for metal oxide nanoparticles. This is due to their very high surface electrical conductivity associated with the electromigration of counter and co-ions in their electrical double layer. Our model has only three adjustable parameters (the minimum separation distance between NPs, the Hamaker constant, and the effective interaction radius of the particle), and predicts very well the stability ratios of TiO2 NPs measured at different pH values and over a broad range of ionic strengths (KCl aqueous solution). We found an effective interaction radius that is significantly smaller than the radius of the aggregate and corresponds to the radius of surface crystallites or small clusters of surface crystallites formed during synthesis of primary particles. Our results confirm that DLVO theory is relevant to predict aggregation kinetics of TiO2 NPs if the double layer interaction energy is estimated accurately.
二氧化钛纳米粒子(TiO2 NPs)广泛应用于消费产品。这些 NPs 释放到水生环境中,引发了它们对环境和人类健康可能产生的风险的问题。威胁的大小可能取决于 TiO2 NPs 是否聚集或分散。目前,关于这个主题的信息有限。提出了一种基于 DLVO 理论的新方法来描述 TiO2 NPs 在水分散体中的聚集动力学。它的优点是使用静电表面络合模型直接计算 ζ 电位,其参数通过从头计算、晶体学研究、电位滴定和电泳迁移率实验进行校准。事实上,对于金属氧化物纳米粒子,将电泳迁移率测量值转换为 ζ 电位非常复杂。这是由于它们非常高的表面电导率,与反离子和共离子在其双电层中的电迁移有关。我们的模型只有三个可调参数(NPs 之间的最小分离距离、哈马克常数和颗粒的有效相互作用半径),并很好地预测了在不同 pH 值和广泛的离子强度(KCl 水溶液)下测量的 TiO2 NPs 的稳定性比。我们发现有效相互作用半径明显小于聚集半径,对应于在初级颗粒合成过程中形成的表面微晶或表面微晶小簇的半径。我们的结果证实,如果准确估计双电层相互作用能,DLVO 理论可用于预测 TiO2 NPs 的聚集动力学。