Suppr超能文献

SR-NLM:一种基于射线重建的非局部均值图像滤波方法,用于低剂量计算机断层扫描。

SR-NLM: a sinogram restoration induced non-local means image filtering for low-dose computed tomography.

机构信息

School of Biomedical Engineering, Southern Medical University, Guangdong, Guangzhou 510515, China.

出版信息

Comput Med Imaging Graph. 2013 Jun;37(4):293-303. doi: 10.1016/j.compmedimag.2013.05.004. Epub 2013 Jun 24.

Abstract

Radiation dose has raised significant concerns to patients and operators in modern X-ray computed tomography (CT) examinations. A simple and cost-effective means to perform a low-dose CT scan is to lower the milliampere-seconds (mAs) as low as reasonably achievable in data acquisition. However, the associated image quality with lower-mAs scans (or low-dose scans) will be unavoidably degraded due to the excessive data noise, if no adequate noise control is applied during image reconstruction. For image reconstruction with low-dose scans, sinogram restoration algorithms based on modeling the noise properties of measurement can produce an image with noise-induced artifact suppression, but they often suffer noticeable resolution loss. As an alternative technique, the noise-reduction algorithms via edge-preserving image filtering can yield an image without noticeable resolution loss, but they often do not completely eliminate the noise-induced artifacts. With above observations, in this paper, we present a sinogram restoration induced non-local means (SR-NLM) image filtering algorithm to retain the CT image quality by fully considering the advantages of the sinogram restoration and image filtering algorithms in low-dose image reconstruction. Extensive experimental results show that the present SR-NLM algorithm outperforms the existing methods in terms of cross profile, noise reduction, contrast-to-ratio measure, noise-resolution tradeoff and receiver operating characteristic (ROC) curves.

摘要

在现代 X 射线计算机断层扫描(CT)检查中,辐射剂量引起了患者和操作人员的高度关注。一种简单且具有成本效益的方法是在数据采集过程中尽可能降低毫安秒(mAs),以实现低剂量 CT 扫描。然而,如果在图像重建过程中不应用适当的噪声控制,那么较低 mAs 扫描(或低剂量扫描)的相关图像质量将不可避免地降低,因为会有过多的数据噪声。对于低剂量扫描的图像重建,基于测量噪声特性建模的正弦图恢复算法可以生成具有噪声抑制伪影的图像,但它们通常会遭受明显的分辨率损失。作为替代技术,通过边缘保持图像滤波的降噪算法可以生成无明显分辨率损失的图像,但它们通常不能完全消除噪声引起的伪影。基于上述观察,本文提出了一种基于正弦图恢复的非局部均值(SR-NLM)图像滤波算法,通过充分考虑正弦图恢复和图像滤波算法在低剂量图像重建中的优势,来保持 CT 图像质量。大量实验结果表明,与现有方法相比,本 SR-NLM 算法在交叉轮廓、降噪、对比比测量、噪声分辨率权衡和接收器操作特性(ROC)曲线方面表现更好。

相似文献

3
Ray contribution masks for structure adaptive sinogram filtering.射线贡献掩模用于结构自适应正弦图滤波。
IEEE Trans Med Imaging. 2012 Jun;31(6):1228-39. doi: 10.1109/TMI.2012.2187213. Epub 2012 Feb 10.
4
Validation of CT dose-reduction simulation.CT剂量降低模拟的验证。
Med Phys. 2009 Jan;36(1):174-89. doi: 10.1118/1.3031114.

引用本文的文献

6
Stacked competitive networks for noise reduction in low-dose CT.用于低剂量CT降噪的堆叠竞争网络
PLoS One. 2017 Dec 21;12(12):e0190069. doi: 10.1371/journal.pone.0190069. eCollection 2017.
7
[Sinogram restoration for low-dose cerebral perfusion CT images].[低剂量脑灌注CT图像的汉字恢复]
Nan Fang Yi Ke Da Xue Xue Bao. 2016 Apr 20;37(4):470-474. doi: 10.3969/j.issn.1673-4254.2017.04.08.

本文引用的文献

8
Sparse angular CT reconstruction using non-local means based iterative-correction POCS.基于非局部均值迭代校正的稀疏角 CT 重建。
Comput Biol Med. 2011 Apr;41(4):195-205. doi: 10.1016/j.compbiomed.2011.01.009. Epub 2011 Feb 21.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验