Suppr超能文献

基于气味成像传感器阵列的便携式电子鼻对茶叶种类的分类。

Classification of tea category using a portable electronic nose based on an odor imaging sensor array.

机构信息

School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China.

出版信息

J Pharm Biomed Anal. 2013 Oct;84:77-83. doi: 10.1016/j.jpba.2013.05.046. Epub 2013 Jun 3.

Abstract

A developed portable electronic nose (E-nose) based on an odor imaging sensor array was successfully used for classification of three different fermentation degrees of tea (i.e., green tea, black tea, and Oolong tea). The odor imaging sensor array was fabricated by printing nine dyes, including porphyrin and metalloporphyrins, on the hydrophobic porous membrane. A color change profile for each sample was obtained by differentiating the image of sensor array before and after exposure to tea's volatile organic compounds (VOCs). Multivariate analysis was used for the classification of tea categories, and linear discriminant analysis (LDA) achieved 100% classification rate by leave-one-out cross-validation (LOOCV). This study demonstrates that the E-nose based on odor imaging sensor array has a high potential in the classification of tea category according to different fermentation degrees.

摘要

一种基于气味成像传感器阵列的成熟便携式电子鼻(E-nose)成功地用于三种不同发酵程度的茶(即绿茶、红茶和乌龙茶)的分类。气味成像传感器阵列是通过在疏水性多孔膜上打印包括卟啉和金属卟啉在内的 9 种染料来制造的。通过区分传感器阵列在暴露于茶的挥发性有机化合物(VOCs)前后的图像,获得每个样品的颜色变化轮廓。多元分析用于茶类的分类,线性判别分析(LDA)通过留一法交叉验证(LOOCV)实现了 100%的分类率。本研究表明,基于气味成像传感器阵列的 E-nose 具有根据不同发酵程度对茶类进行分类的巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验