Cross Katy A, Torrisi Salvatore, Reynolds Losin Elizabeth A, Iacoboni Marco
Interdepartmental Neuroscience Program, University of California, Los Angeles, USA; Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, USA.
Neuroimage. 2013 Dec;83:493-504. doi: 10.1016/j.neuroimage.2013.06.060. Epub 2013 Jun 26.
Humans have an automatic tendency to imitate others. Although several regions commonly observed in social tasks have been shown to be involved in imitation control, there is little work exploring how these regions interact with one another. We used fMRI and dynamic causal modeling to identify imitation-specific control mechanisms and examine functional interactions between regions. Participants performed a pre-specified action (lifting their index or middle finger) in response to videos depicting the same two actions (biological cues) or dots moving with similar trajectories (non-biological cues). On congruent trials, the stimulus and response were similar (e.g. index finger response to index finger or left side dot stimulus), while on incongruent trials the stimulus and response were dissimilar (e.g. index finger response to middle finger or right side dot stimulus). Reaction times were slower on incongruent compared to congruent trials for both biological and non-biological stimuli, replicating previous findings that suggest the automatic imitative or spatially compatible (congruent) response must be controlled on incongruent trials. Neural correlates of the congruency effects were different depending on the cue type. The medial prefrontal cortex, anterior cingulate, inferior frontal gyrus pars opercularis (IFGpo) and the left anterior insula were involved specifically in controlling imitation. In addition, the IFGpo was also more active for biological compared to non-biological stimuli, suggesting that the region represents the frontal node of the human mirror neuron system (MNS). Effective connectivity analysis exploring the interactions between these regions, suggests a role for the mPFC and ACC in imitative conflict detection and the anterior insula in conflict resolution processes, which may occur through interactions with the frontal node of the MNS. We suggest an extension of the previous models of imitation control involving interactions between imitation-specific and general cognitive control mechanisms.
人类具有自动模仿他人的倾向。尽管在社交任务中常见的几个区域已被证明与模仿控制有关,但很少有研究探讨这些区域之间是如何相互作用的。我们使用功能磁共振成像(fMRI)和动态因果模型来识别特定于模仿的控制机制,并检查各区域之间的功能相互作用。参与者根据描绘相同两种动作(生物线索)或沿相似轨迹移动的点(非生物线索)的视频执行预先指定的动作(举起食指或中指)。在一致试验中,刺激和反应相似(例如,对食指的刺激做出食指反应或对左侧点刺激做出反应),而在不一致试验中,刺激和反应不同(例如,对食指刺激做出中指反应或对右侧点刺激做出反应)。对于生物和非生物刺激,不一致试验的反应时间均比一致试验慢,这重复了先前的研究结果,即表明在不一致试验中必须控制自动模仿或空间兼容(一致)反应。一致性效应的神经相关性因线索类型而异。内侧前额叶皮质、前扣带回、额下回 opercularis 部(IFGpo)和左侧前岛叶特别参与控制模仿。此外,与非生物刺激相比,IFGpo 对生物刺激也更活跃,这表明该区域代表人类镜像神经元系统(MNS)的额叶节点。探索这些区域之间相互作用的有效连接性分析表明,内侧前额叶皮质和前扣带回在模仿冲突检测中起作用,而前岛叶在冲突解决过程中起作用,这可能通过与 MNS 的额叶节点相互作用而发生。我们建议扩展先前的模仿控制模型,使其涉及特定于模仿的控制机制与一般认知控制机制之间的相互作用。