Suppr超能文献

在水生态环境中,粘细菌杀死大肠杆菌需要依赖胞外多糖的物理接触。

Killing of Escherichia coli by Myxococcus xanthus in aqueous environments requires exopolysaccharide-dependent physical contact.

机构信息

School of Dentistry, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA.

出版信息

Microb Ecol. 2013 Oct;66(3):630-8. doi: 10.1007/s00248-013-0252-x. Epub 2013 Jul 5.

Abstract

Nutrient or niche-based competition among bacteria is a widespread phenomenon in the natural environment. Such interspecies interactions are often mediated by secreted soluble factors and/or direct cell-cell contact. As ubiquitous soil bacteria, Myxococcus species are able to produce a variety of bioactive secondary metabolites to inhibit the growth of other competing bacterial species. Meanwhile, Myxococcus spp. also exhibit sophisticated predatory behavior, an extreme form of competition that is often stimulated by close contact with prey cells and largely depends on the availability of solid surfaces. Myxococcus spp. can also be isolated from aquatic environments. However, studies focusing on the interaction between Myxococcus and other bacteria in such environments are still limited. In this study, using the well-studied Myxococcus xanthus DK1622 and Escherichia coli as model interspecies interaction pair, we demonstrated that in an aqueous environment, M. xanthus was able to kill E. coli in a cell contact-dependent manner and that the observed contact-dependent killing required the formation of co-aggregates between M. xanthus and E. coli cells. Further analysis revealed that exopolysaccharide (EPS), type IV pilus, and lipopolysaccharide mutants of M. xanthus displayed various degrees of attenuation in E. coli killing, and it correlated well with the mutants' reduction in EPS production. In addition, M. xanthus showed differential binding ability to different bacteria, and bacterial strains unable to co-aggregate with M. xanthus can escape the killing, suggesting the specific nature of co-aggregation and the targeted killing of interacting bacteria. In conclusion, our results demonstrated EPS-mediated, contact-dependent killing of E. coli by M. xanthus, a strategy that might facilitate the survival of this ubiquitous bacterium in aquatic environments.

摘要

细菌之间的营养或生态位竞争是自然环境中普遍存在的现象。这种种间相互作用通常通过分泌的可溶性因子和/或直接的细胞-细胞接触来介导。作为普遍存在的土壤细菌,粘球菌属能够产生多种生物活性次生代谢物来抑制其他竞争细菌的生长。同时,粘球菌属也表现出复杂的捕食行为,这是一种极端的竞争形式,通常受到与猎物细胞的紧密接触的刺激,并且在很大程度上取决于固体表面的可用性。粘球菌属也可以从水生环境中分离出来。然而,关于此类环境中粘球菌属与其他细菌相互作用的研究仍然有限。在这项研究中,我们使用研究充分的粘球菌属 DK1622 和大肠杆菌作为模型种间相互作用对,证明在水相环境中,粘球菌属能够以细胞接触依赖的方式杀死大肠杆菌,并且观察到的接触依赖性杀伤需要粘球菌属和大肠杆菌细胞之间形成共聚集。进一步的分析表明,粘球菌属的荚膜多糖 (EPS)、IV 型菌毛和脂多糖突变体在杀死大肠杆菌方面表现出不同程度的减弱,这与突变体 EPS 产生减少密切相关。此外,粘球菌属对不同细菌表现出不同的结合能力,并且不能与粘球菌属共聚集的细菌菌株可以逃避杀伤,这表明共聚集和相互作用细菌的靶向杀伤具有特异性。总之,我们的结果表明,粘球菌属通过 EPS 介导的、接触依赖性的方式杀死大肠杆菌,这一策略可能有助于这种普遍存在的细菌在水生环境中的生存。

相似文献

3
Predatory activity of Myxococcus xanthus outer-membrane vesicles and properties of their hydrolase cargo.
Microbiology (Reading). 2012 Nov;158(Pt 11):2742-2752. doi: 10.1099/mic.0.060343-0. Epub 2012 Sep 13.
4
Behavioral analysis of single cells of Myxococcus xanthus in response to prey cells of Escherichia coli.
FEMS Microbiol Lett. 1996 Apr 1;137(2-3):227-31. doi: 10.1111/j.1574-6968.1996.tb08110.x.
5
A CRISPR with roles in Myxococcus xanthus development and exopolysaccharide production.
J Bacteriol. 2014 Dec;196(23):4036-43. doi: 10.1128/JB.02035-14. Epub 2014 Sep 8.
6
Characterization of the Exopolysaccharide Biosynthesis Pathway in Myxococcus xanthus.
J Bacteriol. 2020 Sep 8;202(19). doi: 10.1128/JB.00335-20.
8
Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus.
Mol Microbiol. 2005 Jan;55(1):206-20. doi: 10.1111/j.1365-2958.2004.04369.x.
9
Rhizobial galactoglucan determines the predatory pattern of Myxococcus xanthus and protects Sinorhizobium meliloti from predation.
Environ Microbiol. 2014 Jul;16(7):2341-50. doi: 10.1111/1462-2920.12477. Epub 2014 Apr 28.

引用本文的文献

2
Comparative genomics and transcriptomics insight into myxobacterial metabolism potentials and multiple predatory strategies.
Front Microbiol. 2023 May 5;14:1146523. doi: 10.3389/fmicb.2023.1146523. eCollection 2023.
4
Concepts and conjectures concerning predatory performance of myxobacteria.
Front Microbiol. 2022 Sep 29;13:1031346. doi: 10.3389/fmicb.2022.1031346. eCollection 2022.
5
Adaptive Evolution of Geobacter sulfurreducens in Coculture with Pseudomonas aeruginosa.
mBio. 2020 Apr 7;11(2):e02875-19. doi: 10.1128/mBio.02875-19.
7
Exopolysaccharide protects from exogenous attacks by the type 6 secretion system.
Proc Natl Acad Sci U S A. 2018 Jul 31;115(31):7997-8002. doi: 10.1073/pnas.1808469115. Epub 2018 Jul 18.
9
The lethal cargo of Myxococcus xanthus outer membrane vesicles.
Front Microbiol. 2014 Sep 9;5:474. doi: 10.3389/fmicb.2014.00474. eCollection 2014.
10
Biofilm formation protects Escherichia coli against killing by Caenorhabditis elegans and Myxococcus xanthus.
Appl Environ Microbiol. 2014 Nov;80(22):7079-87. doi: 10.1128/AEM.02464-14. Epub 2014 Sep 5.

本文引用的文献

2
Type VI secretion delivers bacteriolytic effectors to target cells.
Nature. 2011 Jul 20;475(7356):343-7. doi: 10.1038/nature10244.
3
Antibiotic production by myxobacteria plays a role in predation.
J Bacteriol. 2011 Sep;193(18):4626-33. doi: 10.1128/JB.05052-11. Epub 2011 Jul 15.
4
Close encounters: contact-dependent interactions in bacteria.
Mol Microbiol. 2011 Jul;81(2):297-301. doi: 10.1111/j.1365-2958.2011.07711.x. Epub 2011 Jun 9.
5
Bacterial contact-dependent delivery systems.
Annu Rev Genet. 2010;44:71-90. doi: 10.1146/annurev.genet.42.110807.091449.
6
Comparative analysis of myxococcus predation on soil bacteria.
Appl Environ Microbiol. 2010 Oct;76(20):6920-7. doi: 10.1128/AEM.00414-10. Epub 2010 Aug 27.
8
PilA localization affects extracellular polysaccharide production and fruiting body formation in Myxococcus xanthus.
Mol Microbiol. 2010 Jun;76(6):1500-13. doi: 10.1111/j.1365-2958.2010.07180.x. Epub 2010 Apr 23.
9
Bacterial competition: surviving and thriving in the microbial jungle.
Nat Rev Microbiol. 2010 Jan;8(1):15-25. doi: 10.1038/nrmicro2259.
10
Deciphering the hunting strategy of a bacterial wolfpack.
FEMS Microbiol Rev. 2009 Sep;33(5):942-57. doi: 10.1111/j.1574-6976.2009.00185.x. Epub 2009 May 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验