Department of Mathematics, University of Chicago, Chicago, IL 60637, USA.
Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13300-5. doi: 10.1073/pnas.1306114110. Epub 2013 Jul 8.
Cantor proved in 1874 [Cantor G (1874) J Reine Angew Math 77:258-262] that the continuum is uncountable, and Hilbert's first problem asks whether it is the smallest uncountable cardinal. A program arose to study cardinal invariants of the continuum, which measure the size of the continuum in various ways. By Gödel [Gödel K (1939) Proc Natl Acad Sci USA 25(4):220-224] and Cohen [Cohen P (1963) Proc Natl Acad Sci USA 50(6):1143-1148], Hilbert's first problem is independent of ZFC (Zermelo-Fraenkel set theory with the axiom of choice). Much work both before and since has been done on inequalities between these cardinal invariants, but some basic questions have remained open despite Cohen's introduction of forcing. The oldest and perhaps most famous of these is whether " p = t," which was proved in a special case by Rothberger [Rothberger F (1948) Fund Math 35:29-46], building on Hausdorff [Hausdorff (1936) Fund Math 26:241-255]. In this paper we explain how our work on the structure of Keisler's order, a large-scale classification problem in model theory, led to the solution of this problem in ZFC as well as of an a priori unrelated open question in model theory.
康托在 1874 年证明了[Cantor G(1874)J Reine Angew Math 77:258-262]连续统是不可数的,而希尔伯特的第一个问题是询问它是否是最小的不可数基数。一个研究连续统基数不变量的计划应运而生,这些基数以各种方式衡量连续统的大小。通过哥德尔[Gödel K(1939)Proc Natl Acad Sci USA 25(4):220-224]和科恩[Cohen P(1963)Proc Natl Acad Sci USA 50(6):1143-1148],希尔伯特的第一个问题与 ZFC(带有选择公理的策梅洛-弗兰克尔集合论)无关。在这之前和之后,人们都在这些基数不变量之间的不等式上做了大量的工作,但尽管科恩引入了强制,一些基本问题仍然没有得到解决。其中最古老和最著名的问题是“p=t”,这是由罗思伯格[Rothberger F(1948)Fund Math 35:29-46]在特殊情况下证明的,这是豪斯多夫[Hausdorff(1936)Fund Math 26:241-255]的工作的基础。在本文中,我们将解释我们在凯斯勒序的结构上的工作是如何导致这个问题在 ZFC 中的解决以及模型论中一个先前无关的开放性问题的解决的。