E. Hála Laboratory of Thermodynamics, Institute of Chemical Process Fundamentals, Academy of Sciences, 16502 Prague 6, Czech Republic.
J Phys Condens Matter. 2013 Jul 31;25(30):305005. doi: 10.1088/0953-8984/25/30/305005. Epub 2013 Jul 9.
We present numerical studies of complete, first-order and critical wedge filling transitions, at a right angle corner, using a microscopic fundamental measure density functional theory. We consider systems with short-ranged, cut-off Lennard-Jones, fluid-fluid forces and two types of wall-fluid potential: a purely repulsive hard wall and also a long-ranged potential with three different strengths. For each of these systems we first determine the wetting properties occurring at a planar wall, including any wetting transition and the dependence of the contact angle on temperature. The hard wall corner is completely filled by vapour on approaching bulk coexistence and the numerical results for the growth of the meniscus thickness are in excellent agreement with effective Hamiltonian predictions for the critical exponents and amplitudes, at leading and next-to-leading order. In the presence of the attractive wall-fluid interaction, the corresponding planar wall-fluid interface exhibits a first-order wetting transition for each of the interaction strengths considered. In the right angle wedge geometry the two strongest interactions produce first-order filling transitions while for the weakest interaction strength, for which wetting and filling occur closest to the bulk critical point, the filling transition is second-order. For this continuous transition the critical exponent describing the divergence of the meniscus thickness is found to be in good agreement with effective Hamiltonian predictions.
我们使用微观基本测量密度泛函理论对完全、一级和临界楔形填充转变进行了数值研究,在直角拐角处。我们考虑了具有短程、截止 Lennard-Jones、流体-流体力和两种壁-流体势的系统:纯排斥硬壁和三种不同强度的长程势。对于每个系统,我们首先确定在平面壁处发生的润湿性质,包括任何润湿转变和接触角对温度的依赖性。接近体相共存时,蒸气完全填充硬角,并且毛细厚度增长的数值结果与有效哈密顿量预测的临界指数和振幅非常吻合,在领先和次领先阶次。在存在吸引力壁-流体相互作用的情况下,相应的平面壁-流体界面对于所考虑的每个相互作用强度都表现出一级润湿转变。在直角楔形几何形状中,前两个最强的相互作用产生一级填充转变,而对于最弱的相互作用强度,对于最接近体相临界点的润湿和填充,填充转变是二级的。对于这种连续转变,描述毛细厚度发散的临界指数与有效哈密顿量预测非常吻合。