Mavridis Dimitris, Ntzoufras Ioannis
Department of Primary Education, University of Ioannina, Greece; Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Greece.
Br J Math Stat Psychol. 2014 May;67(2):284-303. doi: 10.1111/bmsp.12019. Epub 2013 Jul 10.
In this paper we implement a Markov chain Monte Carlo algorithm based on the stochastic search variable selection method of George and McCulloch (1993) for identifying promising subsets of manifest variables (items) for factor analysis models. The suggested algorithm is constructed by embedding in the usual factor analysis model a normal mixture prior for the model loadings with latent indicators used to identify not only which manifest variables should be included in the model but also how each manifest variable is associated with each factor. We further extend the suggested algorithm to allow for factor selection. We also develop a detailed procedure for the specification of the prior parameters values based on the practical significance of factor loadings using ideas from the original work of George and McCulloch (1993). A straightforward Gibbs sampler is used to simulate from the joint posterior distribution of all unknown parameters and the subset of variables with the highest posterior probability is selected. The proposed method is illustrated using real and simulated data sets.
在本文中,我们基于George和McCulloch(1993)的随机搜索变量选择方法实现了一种马尔可夫链蒙特卡罗算法,用于识别因子分析模型中显变量(项目)的有前景子集。所建议的算法是通过在通常的因子分析模型中嵌入一个用于模型载荷的正态混合先验来构建的,其中潜在指标不仅用于识别哪些显变量应包含在模型中,还用于确定每个显变量如何与每个因子相关联。我们进一步扩展了所建议的算法以允许进行因子选择。我们还基于George和McCulloch(1993)的原始工作中的思想,根据因子载荷的实际意义,开发了一种详细的先验参数值设定程序。使用一个直接的吉布斯采样器从所有未知参数的联合后验分布中进行模拟,并选择后验概率最高的变量子集。使用真实和模拟数据集对所提出的方法进行了说明。