Suppr超能文献

基于依赖 Polya 树的回归分析。

Regression analysis using dependent Polya trees.

机构信息

IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, New York, 10598, U.S.A.

出版信息

Stat Med. 2013 Nov 30;32(27):4679-95. doi: 10.1002/sim.5898. Epub 2013 Jul 9.

Abstract

Many commonly used models for linear regression analysis force overly simplistic shape and scale constraints on the residual structure of data. We propose a semiparametric Bayesian model for regression analysis that produces data-driven inference by using a new type of dependent Polya tree prior to model arbitrary residual distributions that are allowed to evolve across increasing levels of an ordinal covariate (e.g., time, in repeated measurement studies). By modeling residual distributions at consecutive covariate levels or time points using separate, but dependent Polya tree priors, distributional information is pooled while allowing for broad pliability to accommodate many types of changing residual distributions. We can use the proposed dependent residual structure in a wide range of regression settings, including fixed-effects and mixed-effects linear and nonlinear models for cross-sectional, prospective, and repeated measurement data. A simulation study illustrates the flexibility of our novel semiparametric regression model to accurately capture evolving residual distributions. In an application to immune development data on immunoglobulin G antibodies in children, our new model outperforms several contemporary semiparametric regression models based on a predictive model selection criterion.

摘要

许多常用的线性回归分析模型对数据的残差结构强加了过于简单的形状和尺度约束。我们提出了一种用于回归分析的半参数贝叶斯模型,通过使用一种新的依赖 Polya 树先验来对任意残差分布进行数据驱动的推断,这种先验允许残差分布在有序协变量(例如时间,在重复测量研究中)的递增水平上演变。通过在连续的协变量水平或时间点上使用单独但依赖的 Polya 树先验来建模残差分布,可以在允许广泛适应性以适应许多类型的变化残差分布的同时汇集分布信息。我们可以在广泛的回归设置中使用建议的依赖残差结构,包括用于横截面、前瞻性和重复测量数据的固定效应和混合效应线性和非线性模型。一项模拟研究说明了我们新颖的半参数回归模型的灵活性,能够准确捕捉演变的残差分布。在对儿童免疫球蛋白 G 抗体的免疫发育数据的应用中,我们的新模型在基于预测模型选择标准的情况下优于几种当代半参数回归模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验