Suppr超能文献

利用仙台病毒载体生成的无重编程因子的血源性诱导多能干细胞。

Blood cell-derived induced pluripotent stem cells free of reprogramming factors generated by Sendai viral vectors.

机构信息

Department of Medicine and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143, USA.

出版信息

Stem Cells Transl Med. 2013 Aug;2(8):558-66. doi: 10.5966/sctm.2013-0006. Epub 2013 Jul 11.

Abstract

The discovery of induced pluripotent stem cells (iPSCs) holds great promise for regenerative medicine since it is possible to produce patient-specific pluripotent stem cells from affected individuals for potential autologous treatment. Using nonintegrating cytoplasmic Sendai viral vectors, we generated iPSCs efficiently from adult mobilized CD34⁺ and peripheral blood mononuclear cells. After 5-8 passages, the Sendai viral genome could not be detected by real-time quantitative reverse transcription-polymerase chain reaction. Using the spin embryoid body method, we showed that these blood cell-derived iPSCs could efficiently be differentiated into hematopoietic stem and progenitor cells without the need of coculture with either mouse or human stromal cells. We obtained up to 40% CD34⁺ of which ~25% were CD34⁺/CD43⁺ hematopoietic precursors that could readily be differentiated into mature blood cells. Our study demonstrated a reproducible protocol for reprogramming blood cells into transgene-free iPSCs by the Sendai viral vector method. Maintenance of the genomic integrity of iPSCs without integration of exogenous DNA should allow the development of therapeutic-grade stem cells for regenerative medicine.

摘要

诱导多能干细胞(iPSCs)的发现为再生医学带来了巨大的希望,因为有可能从受影响的个体中产生患者特异性的多能干细胞,用于潜在的自体治疗。我们使用非整合的细胞质仙台病毒载体,从成年动员的 CD34+和外周血单个核细胞中高效地产生了 iPSCs。经过 5-8 个传代,实时定量逆转录聚合酶链反应检测不到仙台病毒基因组。使用旋转胚胎体方法,我们表明这些血细胞衍生的 iPSCs 可以在不需要与小鼠或人基质细胞共培养的情况下有效地分化为造血干细胞和祖细胞。我们获得了高达 40%的 CD34+细胞,其中约 25%为 CD34+/CD43+造血前体细胞,可轻易分化为成熟血细胞。我们的研究通过仙台病毒载体方法证明了一种可重复的方案,可将血细胞重编程为无转基因的 iPSCs。维持 iPSCs 的基因组完整性而不整合外源 DNA,应允许开发用于再生医学的治疗级别的干细胞。

相似文献

1
Blood cell-derived induced pluripotent stem cells free of reprogramming factors generated by Sendai viral vectors.
Stem Cells Transl Med. 2013 Aug;2(8):558-66. doi: 10.5966/sctm.2013-0006. Epub 2013 Jul 11.
4
Transgene-free disease-specific induced pluripotent stem cells from patients with type 1 and type 2 diabetes.
Stem Cells Transl Med. 2012 Jun;1(6):451-61. doi: 10.5966/sctm.2011-0044. Epub 2012 May 30.
5
Non-transmissible MV Vector with Segmented RNA Genome Establishes Different Types of iPSCs from Hematopoietic Cells.
Mol Ther. 2020 Jan 8;28(1):129-141. doi: 10.1016/j.ymthe.2019.09.007. Epub 2019 Sep 12.
7
Generation of induced pluripotent stem cells with CytoTune, a non-integrating Sendai virus.
Methods Mol Biol. 2013;997:45-56. doi: 10.1007/978-1-62703-348-0_5.
8
Establishment of integration-free induced pluripotent stem cells from human recessive dystrophic epidermolysis bullosa keratinocytes.
J Dermatol Sci. 2018 Mar;89(3):263-271. doi: 10.1016/j.jdermsci.2017.11.017. Epub 2017 Dec 1.
9
Transgene-free iPSCs generated from small volume peripheral blood nonmobilized CD34+ cells.
Blood. 2013 Apr 4;121(14):e98-107. doi: 10.1182/blood-2012-03-420273. Epub 2013 Feb 5.
10
Improved Sendai viral system for reprogramming to naive pluripotency.
Cell Rep Methods. 2022 Oct 17;2(11):100317. doi: 10.1016/j.crmeth.2022.100317. eCollection 2022 Nov 21.

引用本文的文献

1
The Role of Human-Induced Pluripotent Stem Cells in Studying Cardiac Channelopathies.
Int J Mol Sci. 2024 Nov 8;25(22):12034. doi: 10.3390/ijms252212034.
2
Generation of Induced Pluripotent Stem Cells from Erythroid Progenitor Cells.
Methods Mol Biol. 2024;2835:99-110. doi: 10.1007/978-1-0716-3995-5_9.
3
The impact of induced pluripotent stem cells in animal conservation.
Vet Res Commun. 2024 Apr;48(2):649-663. doi: 10.1007/s11259-024-10294-3. Epub 2024 Jan 16.
4
Stem Cell-Based Strategies: The Future Direction of Bioartificial Liver Development.
Stem Cell Rev Rep. 2024 Apr;20(3):601-616. doi: 10.1007/s12015-023-10672-5. Epub 2024 Jan 3.
6
Induced pluripotent stem cells: ex vivo models for human diseases due to mitochondrial DNA mutations.
J Biomed Sci. 2023 Sep 22;30(1):82. doi: 10.1186/s12929-023-00967-7.
7
A disease-specific iPS cell resource for studying rare and intractable diseases.
Inflamm Regen. 2023 Sep 8;43(1):43. doi: 10.1186/s41232-023-00294-2.
8
Advances in Genetic Reprogramming: Prospects from Developmental Biology to Regenerative Medicine.
Curr Med Chem. 2024;31(13):1646-1690. doi: 10.2174/0929867330666230503144619.
10
RNA-Based Strategies for Cell Reprogramming toward Pluripotency.
Pharmaceutics. 2022 Jan 28;14(2):317. doi: 10.3390/pharmaceutics14020317.

本文引用的文献

3
Concise review: Genomic stability of human induced pluripotent stem cells.
Stem Cells. 2012 Jan;30(1):22-7. doi: 10.1002/stem.705.
4
Efficient generation of transgene-free human induced pluripotent stem cells (iPSCs) by temperature-sensitive Sendai virus vectors.
Proc Natl Acad Sci U S A. 2011 Aug 23;108(34):14234-9. doi: 10.1073/pnas.1103509108. Epub 2011 Aug 5.
6
Recurrent copy number variations in human induced pluripotent stem cells.
Nat Biotechnol. 2011 Jun 7;29(6):488-91. doi: 10.1038/nbt.1890.
7
Karotypic abnormalities in human induced pluripotent stem cells and embryonic stem cells.
Nat Biotechnol. 2011 Apr;29(4):313-4. doi: 10.1038/nbt.1835.
8
Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency.
Cell Stem Cell. 2011 Apr 8;8(4):376-88. doi: 10.1016/j.stem.2011.03.001.
9
Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome.
Nature. 2011 Mar 10;471(7337):230-4. doi: 10.1038/nature09855. Epub 2011 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验