Suppr超能文献

用于神经科学应用的感应供电可扩展 32 通道无线神经记录系统级芯片

An Inductively Powered Scalable 32-Channel Wireless Neural Recording System-on-a-Chip for Neuroscience Applications.

出版信息

IEEE Trans Biomed Circuits Syst. 2010 Dec;4(6):360-71. doi: 10.1109/TBCAS.2010.2078814.

Abstract

We present an inductively powered 32-channel wireless integrated neural recording (WINeR) system-on-a-chip (SoC) to be ultimately used for one or more small freely behaving animals. The inductive powering is intended to relieve the animals from carrying bulky batteries used in other wireless systems, and enables long recording sessions. The WINeR system uses time-division multiplexing along with a novel power scheduling method that reduces the current in unused low-noise amplifiers (LNAs) to cut the total SoC power consumption. In addition, an on-chip high-efficiency active rectifier with optimized coils help improve the overall system power efficiency, which is controlled in a closed loop to supply stable power to the WINeR regardless of the coil displacements. The WINeR SoC has been implemented in a 0.5-μ m standard complementary metal-oxide semiconductor process, measuring 4.9×3.3 mm(2) and consuming 5.85 mW at ±1.5 V when 12 out of 32 LNAs are active at any time by power scheduling. Measured input-referred noise for the entire system, including the receiver located at 1.2 m, is 4.95 μVrms in the 1 Hz~10 kHz range when the system is inductively powered with 7-cm separation between aligned coils.

摘要

我们提出了一种基于感应供电的 32 通道无线集成神经记录(WINeR)系统芯片(SoC),最终用于一个或多个自由行为的小动物。感应供电旨在使动物摆脱其他无线系统中使用的大容量电池,从而实现长时间的记录。WINeR 系统采用时分复用以及一种新颖的功率调度方法,可降低未使用的低噪声放大器(LNA)中的电流,从而降低整个 SoC 的功耗。此外,片上高效有源整流器和优化的线圈有助于提高整体系统功率效率,该效率采用闭环控制,可根据线圈的位移为 WINeR 提供稳定的电源。WINeR SoC 已采用 0.5-μm 标准互补金属氧化物半导体工艺实现,尺寸为 4.9×3.3mm(2),在 ±1.5V 时,当通过功率调度使 12 个 LNA 中的任何一个在任何时候处于活动状态时,其功耗为 5.85mW。当系统在感应功率下以 7cm 的间隔对齐线圈时,整个系统(包括位于 1.2m 处的接收器)的输入参考噪声在 1Hz~10kHz 范围内为 4.95μVrms。

相似文献

1
An Inductively Powered Scalable 32-Channel Wireless Neural Recording System-on-a-Chip for Neuroscience Applications.
IEEE Trans Biomed Circuits Syst. 2010 Dec;4(6):360-71. doi: 10.1109/TBCAS.2010.2078814.
2
An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End.
IEEE Sens J. 2016 Jan 15;16(2):475-484. doi: 10.1109/JSEN.2015.2483747. Epub 2015 Sep 28.
3
In vivo testing of a low noise 32-channel wireless neural recording system.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1608-11. doi: 10.1109/IEMBS.2009.5333227.
4
An Inductively-Powered Wireless Neural Recording and Stimulation System for Freely-Behaving Animals.
IEEE Trans Biomed Circuits Syst. 2019 Apr;13(2):413-424. doi: 10.1109/TBCAS.2019.2891303. Epub 2019 Jan 7.
5
A low-power 32-channel digitally programmable neural recording integrated circuit.
IEEE Trans Biomed Circuits Syst. 2011 Dec;5(6):592-602. doi: 10.1109/TBCAS.2011.2163404.
6
A Fully Integrated Wireless Compressed Sensing Neural Signal Acquisition System for Chronic Recording and Brain Machine Interface.
IEEE Trans Biomed Circuits Syst. 2016 Aug;10(4):874-883. doi: 10.1109/TBCAS.2016.2574362. Epub 2016 Jul 18.
7
Design of ultra-low power biopotential amplifiers for biosignal acquisition applications.
IEEE Trans Biomed Circuits Syst. 2012 Aug;6(4):344-55. doi: 10.1109/TBCAS.2011.2177089.
8
A Wireless Headstage System Based on Neural-Recording Chip Featuring 315 nW Kickback-Reduction SAR ADC.
IEEE Trans Biomed Circuits Syst. 2023 Feb;17(1):105-115. doi: 10.1109/TBCAS.2022.3224387. Epub 2023 Mar 30.
9
A Trimodal Wireless Implantable Neural Interface System-on-Chip.
IEEE Trans Biomed Circuits Syst. 2020 Dec;14(6):1207-1217. doi: 10.1109/TBCAS.2020.3037452. Epub 2020 Dec 31.
10
An Ultra-Low-Noise, Low Power and Miniaturized Dual-Channel Wireless Neural Recording Microsystem.
Biosensors (Basel). 2022 Aug 8;12(8):613. doi: 10.3390/bios12080613.

引用本文的文献

1
Design and Analysis of a Low-Voltage VCO: Reliability and Variability Performance.
Micromachines (Basel). 2023 Nov 18;14(11):2118. doi: 10.3390/mi14112118.
2
Design and Optimization of Planar Spiral Coils for Powering Implantable Neural Recording Microsystem.
Micromachines (Basel). 2023 Jun 9;14(6):1221. doi: 10.3390/mi14061221.
3
High-density neural recording system design.
Biomed Eng Lett. 2022 May 30;12(3):251-261. doi: 10.1007/s13534-022-00233-z. eCollection 2022 Aug.
4
A resonant current-mode wireless power transfer for implantable medical devices: an overview.
Biomed Eng Lett. 2022 May 17;12(3):229-238. doi: 10.1007/s13534-022-00231-1. eCollection 2022 Aug.
5
Full-duplex enabled wireless power transfer system via textile for miniaturized IMD.
Biomed Eng Lett. 2022 Jul 17;12(3):295-302. doi: 10.1007/s13534-022-00237-9. eCollection 2022 Aug.
6
Miniaturization for wearable EEG systems: recording hardware and data processing.
Biomed Eng Lett. 2022 Jun 6;12(3):239-250. doi: 10.1007/s13534-022-00232-0. eCollection 2022 Aug.
7
Human motor decoding from neural signals: a review.
BMC Biomed Eng. 2019 Sep 3;1:22. doi: 10.1186/s42490-019-0022-z. eCollection 2019.
8
Multi-Channel Neural Recording Implants: A Review.
Sensors (Basel). 2020 Feb 7;20(3):904. doi: 10.3390/s20030904.
9
A Bidirectional Neuromodulation Technology for Nerve Recording and Stimulation.
Micromachines (Basel). 2018 Oct 23;9(11):538. doi: 10.3390/mi9110538.
10
A Time-Domain Analog Spatial Compressed Sensing Encoder for Multi-Channel Neural Recording.
Sensors (Basel). 2018 Jan 11;18(1):184. doi: 10.3390/s18010184.

本文引用的文献

1
HermesD: A High-Rate Long-Range Wireless Transmission System for Simultaneous Multichannel Neural Recording Applications.
IEEE Trans Biomed Circuits Syst. 2010 Jun;4(3):181-91. doi: 10.1109/TBCAS.2010.2044573.
2
Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission.
IEEE Trans Biomed Circuits Syst. 2007 Sep;1(3):193-202. doi: 10.1109/TBCAS.2007.913130.
3
An Integrated Power-Efficient Active Rectifier With Offset-Controlled High Speed Comparators for Inductively Powered Applications.
IEEE Trans Circuits Syst I Regul Pap. 2011;58(8):1749-1760. doi: 10.1109/TCSI.2010.2103172.
4
An Inductively Powered Scalable 32-Channel Wireless Neural Recording System-on-a-Chip for Neuroscience Applications.
Dig Tech Pap IEEE Int Solid State Circuits Conf. 2010;2010:120-121. doi: 10.1109/ISSCC.2010.5434028.
5
An RFID-Based Closed-Loop Wireless Power Transmission System for Biomedical Applications.
IEEE Trans Circuits Syst II Express Briefs. 2010 Apr 1;57(4):260-264. doi: 10.1109/TCSII.2010.2043470.
6
A closed loop wireless power transmission system using a commercial RFID transceiver for biomedical applications.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:3841-4. doi: 10.1109/IEMBS.2009.5332564.
7
Wireless neural recording with single low-power integrated circuit.
IEEE Trans Neural Syst Rehabil Eng. 2009 Aug;17(4):322-9. doi: 10.1109/TNSRE.2009.2023298. Epub 2009 Jun 2.
8
Using pulse width modulation for wireless transmission of neural signals in multichannel neural recording systems.
IEEE Trans Neural Syst Rehabil Eng. 2009 Aug;17(4):354-63. doi: 10.1109/TNSRE.2009.2023302. Epub 2009 Jun 2.
9
A 128-channel 6 mW wireless neural recording IC with spike feature extraction and UWB transmitter.
IEEE Trans Neural Syst Rehabil Eng. 2009 Aug;17(4):312-21. doi: 10.1109/TNSRE.2009.2021607. Epub 2009 May 8.
10
A fully implantable 96-channel neural data acquisition system.
J Neural Eng. 2009 Apr;6(2):026002. doi: 10.1088/1741-2560/6/2/026002. Epub 2009 Mar 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验