Suppr超能文献

基于目标感知的整体超像素选择的图像分类。

Image classification via object-aware holistic superpixel selection.

出版信息

IEEE Trans Image Process. 2013 Nov;22(11):4341-52. doi: 10.1109/TIP.2013.2272514. Epub 2013 Jul 9.

Abstract

In this paper, we propose an object-aware holistic superpixel selection (HPS) method to automatically select the discriminative superpixels of an image for image classification purpose. Through only considering the selected superpixels, the interference of cluttered background on the object can be alleviated effectively and thus the classification performance is significantly enhanced. In particular, for an image, HPS first selects the discriminative superpixels for the characteristics of certain class, which can together match the object template of this class well. In addition, these superpixels compose a class-specific matching region. Through performing such superpixel selection for several most probable classes, respectively, HPS generates multiple class-specific matching regions for a single image. Then, HPS merges these matching regions into an integral object region through exploiting their pixel-level intersection information. Finally, such object region instead of the original image is used for image classification. An appealing advantage of HPS is the ability to alleviate the interference of cluttered background yet not require the object to be segmented out accurately. We evaluate the proposed HPS on four challenging image classification benchmark datasets: Oxford-IIIT PET 37, Caltech-UCSD Birds 200, Caltech 101, and PASCAL VOC 2011. The experimental results consistently show that the proposed HPS can remarkably improve the classification performance.

摘要

在本文中,我们提出了一种基于目标感知的整体超像素选择(HPS)方法,用于自动选择图像的判别性超像素,以实现图像分类目的。通过仅考虑所选的超像素,可以有效地减轻杂乱背景对目标的干扰,从而显著提高分类性能。具体来说,对于一张图像,HPS 首先为特定类别的特征选择判别性超像素,这些超像素可以很好地匹配该类别的目标模板。此外,这些超像素组成一个特定于类别的匹配区域。通过分别对几个最可能的类别执行这样的超像素选择,HPS 为单个图像生成多个特定于类别的匹配区域。然后,HPS 通过利用它们的像素级交叠信息将这些匹配区域合并为一个整体的目标区域。最后,使用这样的目标区域代替原始图像进行图像分类。HPS 的一个吸引人的优点是它能够减轻杂乱背景的干扰,而不需要准确地分割出目标。我们在四个具有挑战性的图像分类基准数据集上评估了所提出的 HPS:Oxford-IIIT PET 37、Caltech-UCSD Birds 200、Caltech 101 和 PASCAL VOC 2011。实验结果一致表明,所提出的 HPS 可以显著提高分类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验