Suppr超能文献

血管紧张素Ⅱ受体阻断剂可减轻小鼠主动脉缩窄后的主动脉重构。

Aortic remodeling after transverse aortic constriction in mice is attenuated with AT1 receptor blockade.

机构信息

Department of Internal Medicine, University of Texas Health Science Center at Houston, University of Texas Medical Branch, Houston, TX 77030, USA.

出版信息

Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2172-9. doi: 10.1161/ATVBAHA.113.301624. Epub 2013 Jul 18.

Abstract

OBJECTIVE

Although hypertension is the most common risk factor for thoracic aortic diseases, it is not understood how increased pressures on the ascending aorta lead to aortic aneurysms. We investigated the role of angiotensin II type 1 receptor activation in ascending aortic remodeling in response to increased biomechanical forces using a transverse aortic constriction (TAC) mouse model.

APPROACH AND RESULTS

Two weeks after TAC, the increased biomechanical pressures led to ascending aortic dilatation and thickening of the medial and adventitial layers of the aorta. There was significant adventitial hyperplasia and inflammatory responses in TAC ascending aortas were accompanied by increased adventitial collagen, elevated inflammatory and proliferative markers, and increased cell density attributable to accumulation of myofibroblasts and macrophages. Treatment with losartan significantly blocked TAC-induced vascular inflammation and macrophage accumulation. However, losartan only partially prevented TAC-induced adventitial hyperplasia, collagen accumulation, and ascending aortic dilatation. Increased Tgfb2 expression and phosphorylated-Smad2 staining in the medial layer of TAC ascending aortas were effectively blocked with losartan. In contrast, the increased Tgfb1 expression and adventitial phospho-Smad2 staining were only partially attenuated by losartan. In addition, losartan significantly blocked extracellular signal-regulated kinase activation and reactive oxygen species production in the TAC ascending aorta.

CONCLUSIONS

Inhibition of the angiotensin II type 1 receptor using losartan significantly attenuated the vascular remodeling associated with TAC but did not completely block the increased transforming growth factor-β1 expression, adventitial Smad2 signaling, and collagen accumulation. These results help to delineate the aortic transforming growth factor-β signaling that is dependent and independent of the angiotensin II type 1 receptor after TAC.

摘要

目的

虽然高血压是导致胸主动脉疾病的最常见危险因素,但尚不清楚升主动脉压力升高如何导致主动脉瘤。我们使用升主动脉缩窄(TAC)小鼠模型研究了血管紧张素 II 型 1 型受体激活在应对升高的生物力学压力时对升主动脉重塑的作用。

方法和结果

TAC 后 2 周,升高的生物力学压力导致升主动脉扩张和中膜及外膜层增厚。TAC 升主动脉伴有明显的外膜增生和炎症反应,外膜胶原增加,炎症和增殖标志物升高,以及归因于肌成纤维细胞和巨噬细胞积累的细胞密度增加。用氯沙坦治疗可显著阻断 TAC 诱导的血管炎症和巨噬细胞积累。然而,氯沙坦仅部分阻止 TAC 诱导的外膜增生、胶原积累和升主动脉扩张。氯沙坦有效阻断了 TAC 升主动脉中层的 Tgfb2 表达和磷酸化 Smad2 染色。相比之下,氯沙坦仅部分减弱了 Tgfb1 表达和外膜磷酸化 Smad2 染色。此外,氯沙坦显著阻断了 TAC 升主动脉细胞外信号调节激酶激活和活性氧产生。

结论

用氯沙坦抑制血管紧张素 II 型 1 型受体可显著减轻 TAC 相关的血管重塑,但不能完全阻断转化生长因子-β1 表达、外膜 Smad2 信号和胶原积累的增加。这些结果有助于描述 TAC 后依赖和不依赖血管紧张素 II 型 1 型受体的主动脉转化生长因子-β 信号。

相似文献

1
Aortic remodeling after transverse aortic constriction in mice is attenuated with AT1 receptor blockade.
Arterioscler Thromb Vasc Biol. 2013 Sep;33(9):2172-9. doi: 10.1161/ATVBAHA.113.301624. Epub 2013 Jul 18.
3
4
TGF-β (Transforming Growth Factor-β) Signaling Protects the Thoracic and Abdominal Aorta From Angiotensin II-Induced Pathology by Distinct Mechanisms.
Arterioscler Thromb Vasc Biol. 2017 Nov;37(11):2102-2113. doi: 10.1161/ATVBAHA.117.309401. Epub 2017 Jul 20.
8
Long-term effects of losartan on structure and function of the thoracic aorta in a mouse model of Marfan syndrome.
Br J Pharmacol. 2009 Nov;158(6):1503-12. doi: 10.1111/j.1476-5381.2009.00443.x. Epub 2009 Oct 8.
9
Changes in the composition of the thoracic aortic wall in spontaneously hypertensive rats treated with losartan or spironolactone.
Clin Exp Pharmacol Physiol. 2009 May;36(5-6):583-8. doi: 10.1111/j.1440-1681.2008.05116.x. Epub 2008 Oct 27.

引用本文的文献

1
Chemokine (C-C Motif) Ligand 2 Expressing Adventitial Fibroblast Expansion During Loeys-Dietz Syndrome Aortic Aneurysm Formation.
Arterioscler Thromb Vasc Biol. 2025 May;45(5):722-742. doi: 10.1161/ATVBAHA.124.322069. Epub 2025 Mar 20.
2
The role of oxidative stress in aortic dissection: a potential therapeutic target.
Front Cardiovasc Med. 2024 Jul 12;11:1410477. doi: 10.3389/fcvm.2024.1410477. eCollection 2024.
3
The perspective of cAMP/cGMP signaling and cyclic nucleotide phosphodiesterases in aortic aneurysm and dissection.
Vascul Pharmacol. 2024 Mar;154:107278. doi: 10.1016/j.vph.2024.107278. Epub 2024 Jan 21.
4
Animal Models, Pathogenesis, and Potential Treatment of Thoracic Aortic Aneurysm.
Int J Mol Sci. 2024 Jan 11;25(2):901. doi: 10.3390/ijms25020901.
5
Health position paper and redox perspectives - Disease burden by transportation noise.
Redox Biol. 2024 Feb;69:102995. doi: 10.1016/j.redox.2023.102995. Epub 2023 Dec 18.
6
Cardiac radiation improves ventricular function in mice and humans with cardiomyopathy.
Med. 2023 Dec 8;4(12):928-943.e5. doi: 10.1016/j.medj.2023.10.006. Epub 2023 Nov 28.
7
The risk factors of postoperative hypoxemia in patients with Stanford type A acute aortic dissection.
Medicine (Baltimore). 2023 Aug 18;102(33):e34704. doi: 10.1097/MD.0000000000034704.
9
Aortic Cellular Diversity and Quantitative Genome-Wide Association Study Trait Prioritization Through Single-Nuclear RNA Sequencing of the Aneurysmal Human Aorta.
Arterioscler Thromb Vasc Biol. 2022 Nov;42(11):1355-1374. doi: 10.1161/ATVBAHA.122.317953. Epub 2022 Sep 29.

本文引用的文献

2
The vitamin D receptor activator paricalcitol prevents fibrosis and diastolic dysfunction in a murine model of pressure overload.
J Steroid Biochem Mol Biol. 2012 Nov;132(3-5):282-9. doi: 10.1016/j.jsbmb.2012.06.004. Epub 2012 Jul 16.
3
Endothelial expression of hypoxia-inducible factor 1 protects the murine heart and aorta from pressure overload by suppression of TGF-β signaling.
Proc Natl Acad Sci U S A. 2012 Apr 3;109(14):E841-50. doi: 10.1073/pnas.1202081109. Epub 2012 Mar 8.
5
Effect of an acute mechanical stimulus on aortic structure in the transverse aortic constriction mouse model.
Clin Exp Pharmacol Physiol. 2011 Sep;38(9):570-6. doi: 10.1111/j.1440-1681.2011.05544.x.
6
Pivotal role of cardiomyocyte TGF-β signaling in the murine pathological response to sustained pressure overload.
J Clin Invest. 2011 Jun;121(6):2301-12. doi: 10.1172/JCI44824. Epub 2011 May 2.
7
Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism.
Science. 2011 Apr 15;332(6027):361-5. doi: 10.1126/science.1192152.
8
Aortic adventitial fibroblasts participate in angiotensin-induced vascular wall inflammation and remodeling.
J Vasc Res. 2011;48(3):261-72. doi: 10.1159/000320358. Epub 2010 Nov 23.
9
Comparison of angiotensin II type 1-receptor blockers to regress pressure overload-induced cardiac hypertrophy in mice.
Hypertens Res. 2010 Dec;33(12):1289-97. doi: 10.1038/hr.2010.182. Epub 2010 Oct 14.
10
beta-Arrestin-biased agonism of the angiotensin receptor induced by mechanical stress.
Sci Signal. 2010 Jun 8;3(125):ra46. doi: 10.1126/scisignal.2000769.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验