Suppr超能文献

耐缺氧龟(Trachemys scripta elegans)果糖-1,6-二磷酸醛缩酶在缺氧期间的特征:酶活性、表达和结构的评估。

Characterization of fructose-1,6-bisphosphate aldolase during anoxia in the tolerant turtle, Trachemys scripta elegans: an assessment of enzyme activity, expression and structure.

机构信息

Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, Ontario, Canada.

出版信息

PLoS One. 2013 Jul 18;8(7):e68830. doi: 10.1371/journal.pone.0068830. Print 2013.

Abstract

One of the most adaptive facultative anaerobes among vertebrates is the freshwater turtle, Trachemys scripta elegans. Upon a decrease in oxygen supply and oxidative phosphorylation, these turtles are able to reduce their metabolic rate and recruit anaerobic glycolysis to meet newly established ATP demands. Within the glycolytic pathway, aldolase enzymes cleave fructose-1,6-bisphosphate to triose phosphates facilitating an increase in anaerobic production of ATP. Importantly, this enzyme exists primarily as tissue-specific homotetramers of aldolase A, B or C located in skeletal muscle, liver and brain tissue, respectively. The present study characterizes aldolase activity and structure in the liver tissue of a turtle whose survival greatly depends on increased glycolytic output during anoxia. Immunoblot and mass spectrometry analysis verified the presence of both aldolase A and B in turtle liver tissue, and results from co-immunoprecipitation experiments suggested that in the turtle aldolase proteins may exist as an uncommon heterotetramer. Expression levels of aldolase A protein increased significantly in liver tissue to 1.59±0.11-fold after 20 h anoxia, when compared to normoxic control values (P<0.05). A similar increase was seen for aldolase B expression. The overall kinetic properties of aldolase, when using fructose-1,6-bisphosphate as substrate, were similar to that of a previously studied aldolase A and aldolase B heterotetramer, with a Km of 240 and 180 nM (for normoxic and anoxic turtle liver, respectively). Ligand docking of fructose-1,6-bisphosphate to the active site of aldolase A and B demonstrated minor differences in both protein:ligand interactions compared to rabbit models. It is likely that the turtle is unique in its ability to regulate a heterotetramer of aldolase A and B, with a higher overall enzymatic activity, to achieve greater rates of glycolytic output and support anoxia survival.

摘要

脊椎动物中最具适应性的兼性厌氧菌之一是淡水龟,即 Trachemys scripta elegans。当氧气供应减少和氧化磷酸化受到抑制时,这些龟类能够降低代谢率并招募无氧糖酵解来满足新建立的 ATP 需求。在糖酵解途径中,醛缩酶将果糖-1,6-二磷酸裂解为三碳磷酸,促进无氧 ATP 的产生增加。重要的是,这种酶主要存在于组织特异性的醛缩酶 A、B 或 C 的同源四聚体中,分别位于骨骼肌、肝脏和脑组织中。本研究描述了一种龟类肝脏中的醛缩酶活性和结构,这种龟类的生存很大程度上依赖于缺氧时糖酵解产物的增加。免疫印迹和质谱分析证实了龟肝脏组织中存在醛缩酶 A 和 B,共免疫沉淀实验结果表明,在龟中,醛缩酶蛋白可能作为一种不常见的杂四聚体存在。与正常氧对照值相比,20 小时缺氧后,肝脏组织中醛缩酶 A 蛋白的表达水平显著增加到 1.59±0.11 倍(P<0.05)。醛缩酶 B 的表达也出现了类似的增加。当使用果糖-1,6-二磷酸作为底物时,醛缩酶的整体动力学特性与之前研究的醛缩酶 A 和 B 杂四聚体相似,Km 值分别为 240 和 180 nM(分别为正常氧和缺氧龟肝脏)。果糖-1,6-二磷酸与醛缩酶 A 和 B 的活性部位的配体对接表明,与兔模型相比,两种蛋白:配体相互作用存在微小差异。龟类可能具有独特的调节醛缩酶 A 和 B 杂四聚体的能力,具有更高的整体酶活性,以实现更高的糖酵解产物输出率并支持缺氧生存。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0914/3715522/f9835eb89258/pone.0068830.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验