Biomolecular Measurement Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, USA.
Nanoscale. 2013 Sep 7;5(17):8138-45. doi: 10.1039/c3nr02374e.
The characteristics and utility of plasmonic nanodome arrays capable of supporting multiple resonance modes are described. A low-cost, large-area replica molding process is used to produce, on flexible plastic substrates, two-dimensional periodic arrays of cylinders that are subsequently coated with SiO2 and Ag thin films to form dome-shaped structures, with 14 nm spacing between the features, in a precise and reproducible fashion. Three distinct optical resonance modes, a grating diffraction mode and two localized surface plasmon resonance (LSPR) modes, are observed experimentally and confirmed by finite-difference-time-domain (FDTD) modeling which is used to calculate the electromagnetic field distribution of each resonance around the nanodome array structure. Each optical mode is characterized by measuring sensitivity to bulk refractive index changes and to surface effects, which are examined using stacked polyelectrolyte layers. The utility of the plasmonic nanodome array as a functional interface for biosensing applications is demonstrated by performing a bioassay to measure the binding affinity constant between protein A and human immunoglobulin G (IgG) as a model system. The nanoreplica molding process presented in this work allows for simple, inexpensive, high-throughput fabrication of nanoscale plasmonic structures over a large surface area (120 × 120 mm(2)) without the requirement for high resolution lithography or additional processes such as etching or liftoff. The availability of multiple resonant modes, each with different optical properties, allows the nanodome array surface to address a wide range of biosensing problems with various target analytes of different sizes and configurations.
描述了能够支持多种共振模式的等离子体纳米穹顶阵列的特点和用途。采用低成本、大面积复制成型工艺,在柔性塑料衬底上制作出二维周期性圆柱阵列,然后用 SiO2 和 Ag 薄膜对其进行涂层,以精确且可重复的方式形成具有 14nm 间距的穹顶结构。实验观察到三种不同的光学共振模式,包括光栅衍射模式和两种局域表面等离子体共振(LSPR)模式,并通过有限差分时域(FDTD)建模进行了验证,该模型用于计算纳米穹顶阵列结构周围每个共振的电磁场分布。通过测量对体折射率变化和表面效应的灵敏度来对每种光学模式进行特性分析,并用堆叠的聚电解质层进行了检查。通过进行生物测定来测量蛋白质 A 与人免疫球蛋白 G(IgG)之间的结合亲和力常数,作为模型系统,演示了等离子体纳米穹顶阵列作为生物传感应用的功能接口的实用性。本工作中提出的纳米复制品成型工艺允许在大面积(120×120mm2)上简单、廉价、高通量地制造纳米级等离子体结构,而无需高分辨率光刻或其他工艺,如蚀刻或剥离。由于存在多种具有不同光学性质的共振模式,纳米穹顶阵列表面可以解决具有不同大小和结构的各种目标分析物的各种生物传感问题。