School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
Biomaterials. 2013 Oct;34(32):7895-904. doi: 10.1016/j.biomaterials.2013.06.034. Epub 2013 Jul 22.
Total internal reflection microscopy combined with microfluidics and supported bilayers is a powerful, single particle tracking (SPT) platform for host-pathogen membrane fusion studies. But one major inadequacy of this platform has been capturing the complexity of the cell membrane, including membrane proteins. Because of this, viruses requiring proteinaceous receptors, or other unknown cellular co-factors, have been precluded from study. Here we describe a general method to integrate proteinaceous receptors and cellular components into supported bilayers for SPT fusion studies. This method is general to any enveloped virus-host cell pair, but demonstrated here for feline coronavirus (FCoV). Supported bilayers are formed from mammalian cell membrane vesicles that express feline aminopeptidase N (the viral receptor) using a cell blebbing technique. SPT is then used to identify fusion intermediates and measure membrane fusion kinetics for FCoV. Overall, the fusion results recapitulate what is observed in vivo, that coronavirus entry requires binding to specific receptors, a low-pH environment, and that membrane fusion is receptor- and protease-dependent. But this method also provides quantitative kinetic rate parameters for intermediate steps in the coronavirus fusion pathway, which to our knowledge have not been obtained before. Moreover, the platform offers versatile, precise control over the sequence of triggers for fusion; these triggers may define the fusion pathway, tissue tropism, and pathogenicity of coronaviruses. Systematically varying these triggers in this platform provides a new route to study how viruses rapidly adapt to other hosts, and to identify factors that led to the emergence of zoonotic viruses, such as human SARS-CoV and the newly emerging human MERS-CoV.
全内反射显微镜结合微流控和支持双层膜是一种强大的、用于单颗粒跟踪(SPT)的平台,可用于研究宿主-病原体膜融合。但该平台的一个主要缺点是无法捕获细胞膜的复杂性,包括膜蛋白。正因为如此,需要蛋白质受体的病毒,或其他未知的细胞辅助因子,都被排除在研究之外。在这里,我们描述了一种将蛋白质受体和细胞成分整合到支持双层膜中进行 SPT 融合研究的通用方法。该方法适用于任何包膜病毒-宿主细胞对,但在此处针对猫冠状病毒(FCoV)进行了演示。支持双层膜是由表达猫氨基肽酶 N(病毒受体)的哺乳动物细胞膜囊泡形成的,使用细胞起泡技术。然后使用 SPT 来鉴定融合中间体并测量 FCoV 的膜融合动力学。总的来说,融合结果再现了体内观察到的情况,即冠状病毒进入需要与特定受体结合、低 pH 环境,并且膜融合受体和蛋白酶依赖性。但是,该方法还为冠状病毒融合途径中的中间步骤提供了定量的动力学速率参数,据我们所知,这些参数以前尚未获得。此外,该平台提供了对融合触发顺序的精确控制;这些触发因素可能定义了冠状病毒的融合途径、组织嗜性和致病性。在该平台中系统地改变这些触发因素为研究病毒如何快速适应其他宿主以及识别导致人畜共患病病毒(如人类 SARS-CoV 和新出现的人类 MERS-CoV)出现的因素提供了新途径。