Suppr超能文献

深度感知图像拼接。

Depth-aware image seam carving.

出版信息

IEEE Trans Cybern. 2013 Oct;43(5):1453-61. doi: 10.1109/TCYB.2013.2273270. Epub 2013 Jul 22.

Abstract

Image seam carving algorithm should preserve important and salient objects as much as possible when changing the image size, while not removing the secondary objects in the scene. However, it is still difficult to determine the important and salient objects that avoid the distortion of these objects after resizing the input image. In this paper, we develop a novel depth-aware single image seam carving approach by taking advantage of the modern depth cameras such as the Kinect sensor, which captures the RGB color image and its corresponding depth map simultaneously. By considering both the depth information and the just noticeable difference (JND) model, we develop an efficient JND-based significant computation approach using the multiscale graph cut based energy optimization. Our method achieves the better seam carving performance by cutting the near objects less seams while removing distant objects more seams. To the best of our knowledge, our algorithm is the first work to use the true depth map captured by Kinect depth camera for single image seam carving. The experimental results demonstrate that the proposed approach produces better seam carving results than previous content-aware seam carving methods.

摘要

图像拼接算法在改变图像大小时,应该尽可能多地保留重要和显著的对象,同时不删除场景中的次要对象。然而,在调整输入图像的大小时,仍然很难确定重要和显著的对象,以避免这些对象的失真。在本文中,我们利用现代深度相机(如 Kinect 传感器),开发了一种新颖的深度感知单图像拼接算法,该传感器可以同时捕获 RGB 彩色图像及其对应的深度图。通过同时考虑深度信息和刚好可察觉差异(JND)模型,我们开发了一种基于多尺度图割的有效基于 JND 的显著计算方法,利用能量优化进行优化。我们的方法通过减少近物的拼接次数,同时增加远物的拼接次数,实现了更好的拼接性能。据我们所知,我们的算法是第一个使用 Kinect 深度相机捕获的真实深度图进行单图像拼接的算法。实验结果表明,与以前的基于内容感知的拼接算法相比,所提出的方法产生了更好的拼接效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验