Ronan William, Pathak Amit, Deshpande Vikram S, McMeeking Robert M, McGarry J Patrick
J Biomech Eng. 2013 Oct;135(10):101012. doi: 10.1115/1.4025114.
Experimental studies where cells are seeded on micropost arrays in order to quantify their contractile behavior are becoming increasingly common. Interpretation of the data generated by this experimental technique is difficult, due to the complexity of the processes underlying cellular contractility and mechanotransduction. In the current study, a coupled framework that considers strain rate dependent contractility and remodeling of the cytoskeleton is used in tandem with a thermodynamic model of tension dependent focal adhesion formation to investigate the biomechanical response of cells adhered to micropost arrays. Computational investigations of the following experimental studies are presented: cell behavior on different sized arrays with a range of post stiffness; stress fiber and focal adhesion formation in irregularly shaped cells; the response of cells to deformations applied locally to individual posts; and the response of cells to equibiaxial stretching of micropost arrays. The predicted stress fiber and focal adhesion distributions; in addition to the predicted post tractions are quantitatively and qualitatively supported by previously published experimental data. The computational models presented in this study thus provide a framework for the design and interpretation of experimental micropost studies.
为了量化细胞的收缩行为而将细胞接种在微柱阵列上的实验研究正变得越来越普遍。由于细胞收缩性和机械转导背后过程的复杂性,对这种实验技术产生的数据进行解释很困难。在当前的研究中,一个考虑应变率依赖性收缩性和细胞骨架重塑的耦合框架与张力依赖性粘着斑形成的热力学模型一起被用于研究附着在微柱阵列上的细胞的生物力学响应。本文展示了对以下实验研究的计算调查:细胞在具有一系列柱刚度的不同尺寸阵列上的行为;不规则形状细胞中应力纤维和粘着斑的形成;细胞对局部施加于单个柱的变形的响应;以及细胞对微柱阵列等双轴拉伸的响应。预测的应力纤维和粘着斑分布;以及预测的柱牵引力在数量和质量上都得到了先前发表的实验数据的支持。因此,本研究中提出的计算模型为实验性微柱研究的设计和解释提供了一个框架。