Suppr超能文献

空肠弯曲菌糖基 N-(formyl)转移酶的结构。

Structure of a sugar N-formyltransferase from Campylobacter jejuni.

机构信息

Department of Biochemistry, University of Wisconsin , Madison, Wisconsin 53706, United States.

出版信息

Biochemistry. 2013 Sep 3;52(35):6114-26. doi: 10.1021/bi4009006. Epub 2013 Aug 20.

Abstract

The O-antigens, which are components of the outer membranes of Gram-negative bacteria, are responsible for the wide species variations seen in nature and are thought to play a role in bacterial virulence. They often contain unusual dideoxysugars such as 3,6-dideoxy-3-formamido-d-glucose (Qui3NFo). Here, we describe a structural and functional investigation of the protein C8J_1081 from Campylobacter jejuni 81116, which is involved in the biosynthesis of Qui3NFo. Specifically, the enzyme, hereafter referred to as WlaRD, catalyzes the N-formylation of dTDP-3,6-dideoxy-3-amino-d-glucose (dTDP-Qui3N) using N(10)-formyltetrahydrofolate as the carbon source. For this investigation, seven X-ray structures of WlaRD, in complexes with various dTDP-linked sugars and cofactors, were determined to resolutions of 1.9 Å or better. One of the models, with bound N(10)-formyltetrahydrofolate and dTDP, represents the first glimpse of an N-formyltransferase with its natural cofactor. Another model contains the reaction products, tetrahydrofolate and dTDP-Qui3NFo. In combination, the structures provide snapshots of the WlaRD active site before and after catalysis. On the basis of these structures, three amino acid residues were targeted for study: Asn 94, His 96, and Asp 132. Mutations of any of these residues resulted in a complete loss of enzymatic activity. Given the position of His 96 in the active site, it can be postulated that it functions as the active site base to remove a proton from the sugar amino group as it attacks the carbonyl carbon of the N-10 formyl group of the cofactor. Enzyme assays demonstrate that WlaRD is also capable of utilizing dTDP-3,6-dideoxy-3-amino-d-galactose (dTDP-Fuc3N) as a substrate, albeit at a much reduced catalytic efficiency.

摘要

O-抗原是革兰氏阴性细菌外膜的组成部分,负责自然界中广泛的物种变异,被认为在细菌毒力中起作用。它们通常含有不寻常的二脱氧糖,如 3,6-二脱氧-3-甲酰胺-d-葡萄糖(Qui3NFo)。在这里,我们描述了参与 Qui3NFo 生物合成的弯曲杆菌 81116 中的 C8J_1081 蛋白的结构和功能研究。具体来说,该酶,此后称为 WlaRD,使用 N(10)-甲酰四氢叶酸作为碳源,催化 dTDP-3,6-二脱氧-3-氨基-d-葡萄糖(dTDP-Qui3N)的 N-甲酰化。为此研究,确定了 WlaRD 与各种 dTDP 连接的糖和辅因子复合物的七个 X 射线结构,分辨率达到 1.9Å 或更好。其中一个模型与结合的 N(10)-甲酰四氢叶酸和 dTDP 结合,代表了第一个具有天然辅因子的 N-甲酰转移酶的样子。另一个模型包含反应产物四氢叶酸和 dTDP-Qui3NFo。结合起来,这些结构提供了催化前后 WlaRD 活性位点的快照。基于这些结构,针对三个氨基酸残基进行了研究:天冬酰胺 94、组氨酸 96 和天冬氨酸 132。这些残基中的任何一个突变都会导致酶活性完全丧失。鉴于组氨酸 96 在活性位点中的位置,可以假设它作为活性位点碱基,在糖氨基攻击辅因子的 N-10 甲酰基的羰基碳时,从糖氨基中除去质子。酶测定表明,WlaRD 也能够利用 dTDP-3,6-二脱氧-3-氨基-d-半乳糖(dTDP-Fuc3N)作为底物,尽管催化效率要低得多。

相似文献

1
Structure of a sugar N-formyltransferase from Campylobacter jejuni.
Biochemistry. 2013 Sep 3;52(35):6114-26. doi: 10.1021/bi4009006. Epub 2013 Aug 20.
2
New role for the ankyrin repeat revealed by a study of the N-formyltransferase from Providencia alcalifaciens.
Biochemistry. 2015 Jan 27;54(3):631-8. doi: 10.1021/bi501539a. Epub 2015 Jan 15.
3
Three-dimensional structure of a sugar N-formyltransferase from Francisella tularensis.
Protein Sci. 2014 Mar;23(3):273-83. doi: 10.1002/pro.2409. Epub 2014 Jan 22.
4
Molecular architecture of an N-formyltransferase from Salmonella enterica O60.
J Struct Biol. 2017 Dec;200(3):267-278. doi: 10.1016/j.jsb.2017.03.002. Epub 2017 Mar 2.
5
Molecular structure of an N-formyltransferase from Providencia alcalifaciens O30.
Protein Sci. 2015 Jun;24(6):976-86. doi: 10.1002/pro.2675. Epub 2015 Apr 2.
6
7
Structural investigation on WlaRG from Campylobacter jejuni: A sugar aminotransferase.
Protein Sci. 2017 Mar;26(3):586-599. doi: 10.1002/pro.3109. Epub 2017 Feb 9.
8
Investigation of a sugar N-formyltransferase from the plant pathogen Pantoea ananatis.
Protein Sci. 2019 Apr;28(4):707-716. doi: 10.1002/pro.3577. Epub 2019 Feb 8.

引用本文的文献

2
Misannotations of the genes encoding sugar N-formyltransferases.
Protein Sci. 2020 Apr;29(4):930-940. doi: 10.1002/pro.3807. Epub 2020 Jan 20.
3
PvdF of pyoverdin biosynthesis is a structurally unique N-formyltetrahydrofolate-dependent formyltransferase.
Arch Biochem Biophys. 2019 Mar 30;664:40-50. doi: 10.1016/j.abb.2019.01.028. Epub 2019 Jan 26.
4
Investigation of a sugar N-formyltransferase from the plant pathogen Pantoea ananatis.
Protein Sci. 2019 Apr;28(4):707-716. doi: 10.1002/pro.3577. Epub 2019 Feb 8.
5
The Mycobacterium tuberculosis complex has a pathway for the biosynthesis of 4-formamido-4,6-dideoxy-d-glucose.
Protein Sci. 2018 Aug;27(8):1491-1497. doi: 10.1002/pro.3443. Epub 2018 Jul 18.
6
Biochemical Investigation of Rv3404c from Mycobacterium tuberculosis.
Biochemistry. 2017 Jul 25;56(29):3818-3825. doi: 10.1021/acs.biochem.7b00506. Epub 2017 Jul 14.
7
Biochemical Characterization of WbkC, an N-Formyltransferase from Brucella melitensis.
Biochemistry. 2017 Jul 18;56(28):3657-3668. doi: 10.1021/acs.biochem.7b00494. Epub 2017 Jul 5.
8
Modeling of interactions between functional domains of ALDH1L1.
Chem Biol Interact. 2017 Oct 1;276:23-30. doi: 10.1016/j.cbi.2017.04.011. Epub 2017 Apr 14.
9
Molecular architecture of an N-formyltransferase from Salmonella enterica O60.
J Struct Biol. 2017 Dec;200(3):267-278. doi: 10.1016/j.jsb.2017.03.002. Epub 2017 Mar 2.
10

本文引用的文献

1
The biosynthesis of nitrogen-, sulfur-, and high-carbon chain-containing sugars.
Chem Soc Rev. 2013 May 21;42(10):4377-407. doi: 10.1039/c2cs35438a. Epub 2013 Jan 25.
3
The role of WlaRG, WlaTB and WlaTC in lipooligosaccharide synthesis by Campylobacter jejuni strain 81116.
Microb Pathog. 2012 Jun;52(6):344-52. doi: 10.1016/j.micpath.2012.03.004. Epub 2012 Mar 15.
4
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
6
Natural-product sugar biosynthesis and enzymatic glycodiversification.
Angew Chem Int Ed Engl. 2008;47(51):9814-59. doi: 10.1002/anie.200801204.
7
HKL-3000: the integration of data reduction and structure solution--from diffraction images to an initial model in minutes.
Acta Crystallogr D Biol Crystallogr. 2006 Aug;62(Pt 8):859-66. doi: 10.1107/S0907444906019949. Epub 2006 Jul 18.
8
The molecular architecture of human N-acetylgalactosamine kinase.
J Biol Chem. 2005 Sep 23;280(38):32784-91. doi: 10.1074/jbc.M505730200. Epub 2005 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验