The Graduate University for Advanced Studies, Myodaiji, Okazaki, Aichi 444-8585, Japan.
J Chem Phys. 2013 Jul 28;139(4):044118. doi: 10.1063/1.4816627.
We report development of the multireference configuration interaction (MRCI) method that can use active space scalable to much larger size references than has previously been possible. The recent development of the density matrix renormalization group (DMRG) method in multireference quantum chemistry offers the ability to describe static correlation in a large active space. The present MRCI method provides a critical correction to the DMRG reference by including high-level dynamic correlation through the CI treatment. When the DMRG and MRCI theories are combined (DMRG-MRCI), the full internal contraction of the reference in the MRCI ansatz, including contraction of semi-internal states, plays a central role. However, it is thought to involve formidable complexity because of the presence of the five-particle rank reduced-density matrix (RDM) in the Hamiltonian matrix elements. To address this complexity, we express the Hamiltonian matrix using commutators, which allows the five-particle rank RDM to be canceled out without any approximation. Then we introduce an approximation to the four-particle rank RDM by using a cumulant reconstruction from lower-particle rank RDMs. A computer-aided approach is employed to derive the exceedingly complex equations of the MRCI in tensor-contracted form and to implement them into an efficient parallel computer code. This approach extends to the size-consistency-corrected variants of MRCI, such as the MRCI+Q, MR-ACPF, and MR-AQCC methods. We demonstrate the capability of the DMRG-MRCI method in several benchmark applications, including the evaluation of single-triplet gap of free-base porphyrin using 24 active orbitals.
我们报告了多参考组态相互作用(MRCI)方法的发展,该方法可以使用可扩展到比以前更大的参考尺寸的活动空间。多参考量子化学中最近发展的密度矩阵重整化群(DMRG)方法能够描述大活动空间中的静态相关。本 MRCI 方法通过包括通过 CI 处理的高级动态相关,为 DMRG 参考提供了关键修正。当 DMRG 和 MRCI 理论结合(DMRG-MRCI)时,MRCI 假设中参考的完全内部收缩,包括半内部状态的收缩,起着核心作用。然而,由于哈密顿矩阵元中存在五粒子秩约化密度矩阵(RDM),因此它被认为涉及到难以处理的复杂性。为了解决这个复杂性,我们使用算符表示哈密顿矩阵,这允许在没有任何近似的情况下消除五粒子秩 RDM。然后,我们通过使用低粒子秩 RDM 的累积重建来引入对四粒子秩 RDM 的近似。采用计算机辅助方法推导出张量收缩形式的 MRCI 的极其复杂的方程,并将其实现到高效的并行计算机代码中。这种方法扩展到了 MRCI 的大小一致性校正变体,例如 MRCI+Q、MR-ACPF 和 MR-AQCC 方法。我们在几个基准应用中展示了 DMRG-MRCI 方法的能力,包括使用 24 个活动轨道评估自由碱基卟啉的单三重态间隙。