Ananthanarayanan Arvind, Ehrlich Leicester, Desai Jaydev P, Gupta Satyandra K
Biomimetics Robotics Laboratory, Massachussetts Institute of Technology, Cambridge, MA 02140 , e-mail:
J Mech Des N Y. 2011 Dec;133(12):121010-12101010. doi: 10.1115/1.4005327. Epub 2011 Nov 14.
Creating highly articulated miniature structures requires assembling a large number of small parts. This is a very challenging task and increases cost of mechanical assemblies. Insert molding presents the possibility of creating a highly articulated structure in a single molding step. This can be accomplished by placing multiple metallic bearings in the mold and injecting plastic on top of them. In theory, this idea can generate a multi degree of freedom structures in just one processing step without requiring any post molding assembly operations. However, the polymer material has a tendency to shrink on top of the metal bearings and hence jam the joints. Hence, until now insert molding has not been used to create articulated structures. This paper presents a theoretical model for estimating the extent of joint jamming that occurs due to the shrinkage of the polymer on top of the metal bearings. The level of joint jamming is seen as the effective torque needed to overcome the friction in the revolute joints formed by insert molding. We then use this model to select the optimum design parameters which can be used to fabricate functional, highly articulating assemblies while meeting manufacturing constraints. Our analysis shows that the strength of weld-lines formed during the in-mold assembly process play a significant role in determining the minimum joint dimensions necessary for fabricating functional revolute joints. We have used the models and methods described in this paper to successfully fabricate the structure for a minimally invasive medical robot prototype with potential applications in neurosurgery. To the best of our knowledge, this is the first demonstration of building an articulated structure with multiple degrees of freedom using insert molding.
制造高度铰接的微型结构需要组装大量小零件。这是一项极具挑战性的任务,会增加机械组件的成本。嵌件成型为在单个成型步骤中创建高度铰接的结构提供了可能性。这可以通过在模具中放置多个金属轴承并在其顶部注入塑料来实现。理论上,这个想法可以在一个加工步骤中生成多自由度结构,而无需任何成型后组装操作。然而,聚合物材料倾向于在金属轴承顶部收缩,从而卡住关节。因此,到目前为止,嵌件成型尚未用于创建铰接结构。本文提出了一个理论模型,用于估计由于聚合物在金属轴承顶部收缩而导致的关节卡住程度。关节卡住程度被视为克服由嵌件成型形成的旋转关节中的摩擦力所需的有效扭矩。然后,我们使用这个模型来选择最佳设计参数,这些参数可用于制造功能性、高度铰接的组件,同时满足制造约束。我们的分析表明,在模内组装过程中形成的熔接线强度在确定制造功能性旋转关节所需的最小关节尺寸方面起着重要作用。我们已经使用本文中描述的模型和方法成功制造了一种微创医疗机器人原型的结构,该原型在神经外科手术中具有潜在应用。据我们所知,这是首次展示使用嵌件成型构建具有多个自由度的铰接结构。