Department of Physics and Astronomy, COMSET, Clemson University, Clemson, SC 29634, USA.
Nanoscale. 2013 Oct 7;5(19):9162-9. doi: 10.1039/c3nr02147e. Epub 2013 Aug 7.
The advancement of nanomedicine and the increasing applications of nanoparticles in consumer products have led to administered biological exposure and unintentional environmental accumulation of nanoparticles, causing concerns over the biocompatibility and sustainability of nanotechnology. Upon entering physiological environments, nanoparticles readily assume the form of a nanoparticle-protein corona that dictates their biological identity. Consequently, understanding the structure and dynamics of a nanoparticle-protein corona is essential for predicting the fate, transport, and toxicity of nanomaterials in living systems and for enabling the vast applications of nanomedicine. Here we combined multiscale molecular dynamics simulations and complementary experiments to characterize the silver nanoparticle-ubiquitin corona formation. Notably, ubiquitins competed with citrates for the nanoparticle surface, governed by specific electrostatic interactions. Under a high protein/nanoparticle stoichiometry, ubiquitins formed a multi-layer corona on the particle surface. The binding exhibited an unusual stretched-exponential behavior, suggesting a rich binding kinetics. Furthermore, the binding destabilized the α-helices while increasing the β-sheet content of the proteins. This study revealed the atomic and molecular details of the structural and dynamic characteristics of nanoparticle-protein corona formation.
纳米医学的进步和纳米粒子在消费产品中的应用日益广泛,导致生物接触和纳米粒子的无意环境积累,引发了人们对纳米技术的生物相容性和可持续性的关注。进入生理环境后,纳米粒子很容易形成纳米粒子-蛋白质冠,决定了它们的生物学特性。因此,了解纳米粒子-蛋白质冠的结构和动力学对于预测纳米材料在活系统中的命运、迁移和毒性,以及实现纳米医学的广泛应用至关重要。在这里,我们结合了多尺度分子动力学模拟和互补实验来表征银纳米粒子-泛素冠的形成。值得注意的是,泛素与柠檬酸根通过特定的静电相互作用竞争纳米粒子表面。在高蛋白质/纳米粒子化学计量比下,泛素在粒子表面形成多层冠。结合表现出异常的拉伸指数行为,表明结合动力学丰富。此外,结合会破坏蛋白质的α-螺旋结构,同时增加β-折叠结构的含量。这项研究揭示了纳米粒子-蛋白质冠形成的结构和动态特征的原子和分子细节。