Suppr超能文献

具有分段线性社会隔离成本的传染病博弈的平衡点。

Equilibria of an epidemic game with piecewise linear social distancing cost.

机构信息

Department of Mathematics, Department of Biology, Pennsylvania State University, University Park, PA, 16802, USA,

出版信息

Bull Math Biol. 2013 Oct;75(10):1961-84. doi: 10.1007/s11538-013-9879-5. Epub 2013 Aug 14.

Abstract

Around the world, infectious disease epidemics continue to threaten people's health. When epidemics strike, we often respond by changing our behaviors to reduce our risk of infection. This response is sometimes called "social distancing." Since behavior changes can be costly, we would like to know the optimal social distancing behavior. But the benefits of changes in behavior depend on the course of the epidemic, which itself depends on our behaviors. Differential population game theory provides a method for resolving this circular dependence. Here, I present the analysis of a special case of the differential SIR epidemic population game with social distancing when the relative infection rate is linear, but bounded below by zero. Equilibrium solutions are constructed in closed-form for an open-ended epidemic. Constructions are also provided for epidemics that are stopped by the deployment of a vaccination that becomes available a fixed-time after the start of the epidemic. This can be used to anticipate a window of opportunity during which mass vaccination can significantly reduce the cost of an epidemic.

摘要

在全球范围内,传染病疫情继续威胁着人们的健康。当疫情爆发时,我们通常会通过改变行为来降低感染风险。这种反应有时被称为“社交隔离”。由于行为改变可能代价高昂,我们希望了解最佳的社交隔离行为。但是行为变化的好处取决于疫情的进程,而疫情的进程又取决于我们的行为。差分人口博弈论为解决这种循环依赖提供了一种方法。在这里,我提出了一个特殊情况下的差分 SIR 传染病人口博弈的分析,其中社交隔离时的相对感染率是线性的,但下限不为零。对于无界疫情,构建了平衡点的封闭形式解。还提供了通过在疫情开始后固定时间部署疫苗来阻止疫情的构造。这可以用来预测一个机会窗口,在此期间大规模接种疫苗可以显著降低疫情的成本。

相似文献

1
Equilibria of an epidemic game with piecewise linear social distancing cost.
Bull Math Biol. 2013 Oct;75(10):1961-84. doi: 10.1007/s11538-013-9879-5. Epub 2013 Aug 14.
2
Game theory of social distancing in response to an epidemic.
PLoS Comput Biol. 2010 May 27;6(5):e1000793. doi: 10.1371/journal.pcbi.1000793.
3
A mathematical analysis of public avoidance behavior during epidemics using game theory.
J Theor Biol. 2012 Jun 7;302:18-28. doi: 10.1016/j.jtbi.2012.03.002. Epub 2012 Mar 8.
4
Games of age-dependent prevention of chronic infections by social distancing.
J Math Biol. 2013 Jun;66(7):1527-53. doi: 10.1007/s00285-012-0543-8. Epub 2012 May 19.
5
Rational social distancing in epidemics with uncertain vaccination timing.
PLoS One. 2023 Jul 21;18(7):e0288963. doi: 10.1371/journal.pone.0288963. eCollection 2023.
6
Economic considerations for social distancing and behavioral based policies during an epidemic.
J Health Econ. 2013 Mar;32(2):440-51. doi: 10.1016/j.jhealeco.2013.01.002. Epub 2013 Jan 26.
7
A state dependent pulse control strategy for a SIRS epidemic system.
Bull Math Biol. 2013 Oct;75(10):1697-715. doi: 10.1007/s11538-013-9865-y. Epub 2013 Jun 28.
8
Protection motivation theory and social distancing behaviour in response to a simulated infectious disease epidemic.
Psychol Health Med. 2015;20(7):832-7. doi: 10.1080/13548506.2015.1028946. Epub 2015 Apr 2.
9
Spontaneous social distancing in response to a simulated epidemic: a virtual experiment.
BMC Public Health. 2015 Sep 28;15:973. doi: 10.1186/s12889-015-2336-7.
10
Controlling epidemic spread by social distancing: do it well or not at all.
BMC Public Health. 2012 Aug 20;12:679. doi: 10.1186/1471-2458-12-679.

引用本文的文献

1
Beyond six feet: The collective behavior of social distancing.
PLoS One. 2024 Sep 13;19(9):e0293489. doi: 10.1371/journal.pone.0293489. eCollection 2024.
3
Path integral control of a stochastic multi-risk SIR pandemic model.
Theory Biosci. 2023 Jun;142(2):107-142. doi: 10.1007/s12064-023-00388-y. Epub 2023 Mar 11.
4
Incentives, lockdown, and testing: from Thucydides' analysis to the COVID-19 pandemic.
J Math Biol. 2022 Apr 10;84(5):37. doi: 10.1007/s00285-022-01736-0.
5
Social distancing is a social dilemma game played by every individual against his/her population.
PLoS One. 2021 Aug 2;16(8):e0255543. doi: 10.1371/journal.pone.0255543. eCollection 2021.
6
Optimal strategies for vaccination and social distancing in a game-theoretic epidemiologic model.
J Theor Biol. 2020 Nov 21;505:110422. doi: 10.1016/j.jtbi.2020.110422. Epub 2020 Jul 25.
7
Behavioural change models for infectious disease transmission: a systematic review (2010-2015).
J R Soc Interface. 2016 Dec;13(125). doi: 10.1098/rsif.2016.0820.
8
Coupled disease-behavior dynamics on complex networks: A review.
Phys Life Rev. 2015 Dec;15:1-29. doi: 10.1016/j.plrev.2015.07.006. Epub 2015 Jul 8.

本文引用的文献

1
A mathematical analysis of public avoidance behavior during epidemics using game theory.
J Theor Biol. 2012 Jun 7;302:18-28. doi: 10.1016/j.jtbi.2012.03.002. Epub 2012 Mar 8.
2
Public avoidance and epidemics: insights from an economic model.
J Theor Biol. 2011 Jun 7;278(1):107-19. doi: 10.1016/j.jtbi.2011.03.007. Epub 2011 Mar 21.
3
A general approach for population games with application to vaccination.
Math Biosci. 2011 Apr;230(2):67-78. doi: 10.1016/j.mbs.2011.01.003. Epub 2011 Jan 28.
4
Game theory of social distancing in response to an epidemic.
PLoS Comput Biol. 2010 May 27;6(5):e1000793. doi: 10.1371/journal.pcbi.1000793.
5
Choices, beliefs, and infectious disease dynamics.
J Health Econ. 2003 May;22(3):361-77. doi: 10.1016/S0167-6296(02)00103-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验