Suppr超能文献

在大规模网络中高效发现重叠社区。

Efficient discovery of overlapping communities in massive networks.

机构信息

Department of Computer Science, Princeton University, Princeton, NJ 08540, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14534-9. doi: 10.1073/pnas.1221839110. Epub 2013 Aug 15.

Abstract

Detecting overlapping communities is essential to analyzing and exploring natural networks such as social networks, biological networks, and citation networks. However, most existing approaches do not scale to the size of networks that we regularly observe in the real world. In this paper, we develop a scalable approach to community detection that discovers overlapping communities in massive real-world networks. Our approach is based on a Bayesian model of networks that allows nodes to participate in multiple communities, and a corresponding algorithm that naturally interleaves subsampling from the network and updating an estimate of its communities. We demonstrate how we can discover the hidden community structure of several real-world networks, including 3.7 million US patents, 575,000 physics articles from the arXiv preprint server, and 875,000 connected Web pages from the Internet. Furthermore, we demonstrate on large simulated networks that our algorithm accurately discovers the true community structure. This paper opens the door to using sophisticated statistical models to analyze massive networks.

摘要

检测重叠社区对于分析和探索自然网络(如社交网络、生物网络和引文网络)至关重要。然而,大多数现有的方法无法扩展到我们在现实世界中经常观察到的网络规模。在本文中,我们开发了一种可扩展的方法来检测社区,以发现大规模真实网络中的重叠社区。我们的方法基于网络的贝叶斯模型,该模型允许节点参与多个社区,以及相应的算法,该算法自然地交错从网络中进行抽样和更新对其社区的估计。我们展示了如何发现包括 370 万项美国专利、arXiv 预印本服务器上的 57.5 万篇物理学文章以及互联网上的 87.5 万互联网页在内的多个真实网络的隐藏社区结构。此外,我们在大型模拟网络上证明了我们的算法可以准确地发现真实的社区结构。本文为使用复杂的统计模型分析大规模网络开辟了道路。

相似文献

1
Efficient discovery of overlapping communities in massive networks.在大规模网络中高效发现重叠社区。
Proc Natl Acad Sci U S A. 2013 Sep 3;110(36):14534-9. doi: 10.1073/pnas.1221839110. Epub 2013 Aug 15.
2
Dynamic social community detection and its applications.动态社会社区检测及其应用。
PLoS One. 2014 Apr 10;9(4):e91431. doi: 10.1371/journal.pone.0091431. eCollection 2014.
4
Efficient and principled method for detecting communities in networks.用于检测网络中社区的高效且有原则的方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 2):036103. doi: 10.1103/PhysRevE.84.036103. Epub 2011 Sep 8.
7
Adaptive clustering algorithm for community detection in complex networks.复杂网络中用于社区检测的自适应聚类算法
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Oct;78(4 Pt 2):046115. doi: 10.1103/PhysRevE.78.046115. Epub 2008 Oct 30.
9
Bayesian community detection.贝叶斯社团检测。
Neural Comput. 2012 Sep;24(9):2434-56. doi: 10.1162/NECO_a_00314. Epub 2012 Apr 17.

引用本文的文献

4
Living on the edge: network neuroscience beyond nodes.边缘生活:节点之外的网络神经科学。
Trends Cogn Sci. 2023 Nov;27(11):1068-1084. doi: 10.1016/j.tics.2023.08.009. Epub 2023 Sep 14.

本文引用的文献

1
The Confrontation between General Relativity and Experiment.广义相对论与实验的对峙
Living Rev Relativ. 2006;9(1):3. doi: 10.12942/lrr-2006-3. Epub 2006 Mar 27.
2
Identifying influential and susceptible members of social networks.识别社交网络中的有影响力和易感染成员。
Science. 2012 Jul 20;337(6092):337-41. doi: 10.1126/science.1215842. Epub 2012 Jun 21.
4
Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications.模块化网络随机块模型的渐近分析及其算法应用。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 2):066106. doi: 10.1103/PhysRevE.84.066106. Epub 2011 Dec 12.
5
Efficient and principled method for detecting communities in networks.用于检测网络中社区的高效且有原则的方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 2):036103. doi: 10.1103/PhysRevE.84.036103. Epub 2011 Sep 8.
6
Inference and phase transitions in the detection of modules in sparse networks.在稀疏网络模块检测中的推断和相变。
Phys Rev Lett. 2011 Aug 5;107(6):065701. doi: 10.1103/PhysRevLett.107.065701. Epub 2011 Aug 2.
7
ArXiv at 20.20时的ArXiv
Nature. 2011 Aug 10;476(7359):145-7. doi: 10.1038/476145a.
10
Link communities reveal multiscale complexity in networks.链接社区揭示了网络的多尺度复杂性。
Nature. 2010 Aug 5;466(7307):761-4. doi: 10.1038/nature09182. Epub 2010 Jun 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验