Biomedical Engineering Department, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA; Bioengineering Institute, Worcester Polytechnic Institute, Worcester, MA 01609, USA.
Acta Biomater. 2013 Dec;9(12):9474-84. doi: 10.1016/j.actbio.2013.08.017. Epub 2013 Aug 17.
Although tissue engineered skin substitutes have demonstrated some clinical success for the treatment of chronic wounds such as diabetic and venous ulcers, persistent graft take and stability remain concerns. Current bilayered skin substitutes lack the characteristic microtopography of the dermal-epidermal junction that gives skin enhanced mechanical stability and creates cellular microniches that differentially promote keratinocyte function to form skin appendages and enhance wound healing. We developed a novel micropatterned dermal-epidermal regeneration matrix (μDERM) which incorporates this complex topography and substantially enhances epidermal morphology. Here, we describe the use of this three-dimensional (3-D) in vitro culture model to systematically evaluate different topographical geometries and to determine their relationship to keratinocyte function. We identified three distinct keratinocyte functional niches: the proliferative niche (narrow geometries), the basement membrane protein synthesis niche (wide geometries) and the putative keratinocyte stem cell niche (narrow geometries and corners). Specifically, epidermal thickness and keratinocyte proliferation is significantly (p<0.05) increased in 50 and 100 μm channels while laminin-332 deposition is significantly (p<0.05) increased in 400 μm channels compared to flat controls. Additionally, β1(bri)p63(+) keratinocytes, putative keratinocyte stem cells, preferentially cluster in channel geometries (similar to clustering observed in native skin) compared to a random distribution on flats. This study identifies specific target geometries to enhance skin regeneration and graft performance. Furthermore, these results suggest the importance of μDERM microtopography in designing the next generation of skin substitutes. Finally, we anticipate that 3-D organotypic cultures on μDERMS will provide a novel tissue engineered skin substitute for in vitro investigations of skin morphogenesis, wound healing and pathology.
尽管组织工程皮肤替代物在治疗糖尿病和静脉溃疡等慢性创面方面已经取得了一些临床成功,但移植物的持续存活和稳定性仍然是令人关注的问题。目前的双层皮肤替代物缺乏真皮-表皮交界处的特征微形貌,这种微形貌赋予皮肤更高的机械稳定性,并创造出细胞微环境,从而差异化地促进角质形成细胞的功能,形成皮肤附属物并增强伤口愈合。我们开发了一种新型的微图案化真皮-表皮再生基质(μDERM),它结合了这种复杂的形貌,并显著增强了表皮形态。在这里,我们描述了使用这种三维(3-D)体外培养模型来系统地评估不同的形貌几何形状,并确定它们与角质形成细胞功能的关系。我们确定了三个不同的角质形成细胞功能龛:增殖龛(窄几何形状)、基底膜蛋白合成龛(宽几何形状)和假定的角质形成细胞干细胞龛(窄几何形状和角落)。具体而言,与平面对照相比,在 50 和 100 μm 通道中,表皮厚度和角质形成细胞增殖显著增加(p<0.05),而在 400 μm 通道中,层粘连蛋白-332 的沉积显著增加(p<0.05)。此外,β1(bri)p63(+)角质形成细胞,假定的角质形成细胞干细胞,优先在通道几何形状中聚集(类似于在天然皮肤中观察到的聚集),而不是在平面上随机分布。这项研究确定了特定的目标几何形状,以增强皮肤再生和移植物性能。此外,这些结果表明 μDERM 微形貌在设计下一代皮肤替代物方面的重要性。最后,我们预计 μDERM 上的 3-D 器官型培养将为皮肤形态发生、伤口愈合和病理学的体外研究提供一种新型的组织工程皮肤替代物。