Suppr超能文献

利用人工神经网络对青蒿素治疗乳腺癌的细胞毒性进行建模与预测。

Modeling and prediction of cytotoxicity of artemisinin for treatment of the breast cancer by using artificial neural networks.

作者信息

Qaderi Abdolhossein, Dadgar Neda, Mansouri Hamidreza, Alavi Seyed Ebrahim, Esfahani Maedeh Koohi Moftakhari, Akbarzadeh Azim

机构信息

Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

出版信息

Springerplus. 2013 Jul 24;2:340. doi: 10.1186/2193-1801-2-340. eCollection 2013.

Abstract

While artemisinin is known as anticancer medication with favorable remedial effects, its side effects must not be neglected. In order to reduce such side effects and increase artemisinin therapeutic index, nano technology has been considered as a new approach. Liposome preparation is supposed to be one of the new methods of drug delivery. To prepare the desired nanoliposome, certain proportions of phosphatidylcholine, cholesterol and artemisinin are mixed together. Besides, in order to achieve more stability, the formulation was pegylated by polyethylene glycol 2000 (PEG 2000). Mean diameter of nanoliposomes was determined by means of Zeta sizer. Encapsulation was calculated 96.02% in nanoliposomal and 91.62% in pegylated formulation. Compared to pegylated formulation, the percent of released drug in nanoliposomal formulation was more. In addition, this study reveals that cytotoxicity effect of pegylated nanoliposomal artemisinin was more than nanoliposomal artemisinin. Since artificial neural network shows high possibility of nonlinear modulation, it is used to predict cytotoxicity effect in this study, which can precisely indicate the cytotoxicity and IC50 of anticancer drugs.

摘要

虽然青蒿素作为一种具有良好治疗效果的抗癌药物而闻名,但其副作用不容忽视。为了减少此类副作用并提高青蒿素的治疗指数,纳米技术已被视为一种新方法。脂质体制备被认为是药物递送的新方法之一。为了制备所需的纳米脂质体,将一定比例的磷脂酰胆碱、胆固醇和青蒿素混合在一起。此外,为了实现更高的稳定性,该制剂用聚乙二醇2000(PEG 2000)进行了聚乙二醇化。纳米脂质体的平均直径通过Zeta粒度分析仪测定。纳米脂质体制剂的包封率计算为96.02%,聚乙二醇化制剂的包封率为91.62%。与聚乙二醇化制剂相比,纳米脂质体制剂中药物的释放百分比更高。此外,本研究表明,聚乙二醇化纳米脂质体青蒿素的细胞毒性作用大于纳米脂质体青蒿素。由于人工神经网络显示出高度的非线性调制可能性,因此在本研究中用于预测细胞毒性作用,它可以精确地指示抗癌药物的细胞毒性和IC50。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4205/3727081/b7d3d090bcab/40064_2013_402_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验