Alonso-Torres Beatriz, Hernández-Pérez José Alfredo, Sierra-Espinoza Fernando, Schenker Stefan, Yeretzian Chahan
Centro de Investigaciones en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Avenida Universidad No. 1001, col. Chamilpa, 62209 Cuernavaca, Morelos, México.
Chimia (Aarau). 2013;67(4):291-4. doi: 10.2533/chimia.2013.291.
Heat and mass transfer in individual coffee beans during roasting were simulated using computational fluid dynamics (CFD). Numerical equations for heat and mass transfer inside the coffee bean were solved using the finite volume technique in the commercial CFD code Fluent; the software was complemented with specific user-defined functions (UDFs). To experimentally validate the numerical model, a single coffee bean was placed in a cylindrical glass tube and roasted by a hot air flow, using the identical geometrical 3D configuration and hot air flow conditions as the ones used for numerical simulations. Temperature and humidity calculations obtained with the model were compared with experimental data. The model predicts the actual process quite accurately and represents a useful approach to monitor the coffee roasting process in real time. It provides valuable information on time-resolved process variables that are otherwise difficult to obtain experimentally, but critical to a better understanding of the coffee roasting process at the individual bean level. This includes variables such as time-resolved 3D profiles of bean temperature and moisture content, and temperature profiles of the roasting air in the vicinity of the coffee bean.
利用计算流体动力学(CFD)模拟了烘焙过程中单个咖啡豆的传热和传质。使用商业CFD软件Fluent中的有限体积技术求解咖啡豆内部传热和传质的数值方程;该软件通过特定的用户自定义函数(UDF)进行补充。为了通过实验验证数值模型,将单个咖啡豆放置在圆柱形玻璃管中,并使用与数值模拟相同的几何三维构型和热气流条件,通过热气流进行烘焙。将模型得到的温度和湿度计算结果与实验数据进行比较。该模型能够相当准确地预测实际过程,是一种实时监测咖啡烘焙过程的有用方法。它提供了关于随时间变化的过程变量的有价值信息,这些信息通过实验难以获得,但对于在单个咖啡豆层面更好地理解咖啡烘焙过程至关重要。这包括诸如咖啡豆温度和水分含量的随时间变化的三维分布以及咖啡豆附近烘焙空气的温度分布等变量。