Suppr超能文献

一种扩展 SemRep 领域覆盖范围的方法。

A methodology for extending domain coverage in SemRep.

机构信息

National Library of Medicine, National Institutes of Health, Lister Hill Center, Cognitive Science Branch, 8600 Rockville Pike, Bethesda, MD 20894, USA.

出版信息

J Biomed Inform. 2013 Dec;46(6):1099-107. doi: 10.1016/j.jbi.2013.08.005. Epub 2013 Aug 21.

Abstract

We describe a domain-independent methodology to extend SemRep coverage beyond the biomedical domain. SemRep, a natural language processing application originally designed for biomedical texts, uses the knowledge sources provided by the Unified Medical Language System (UMLS©). Ontological and terminological extensions to the system are needed in order to support other areas of knowledge. We extended SemRep's application by developing a semantic representation of a previously unsupported domain. This was achieved by adapting well-known ontology engineering phases and integrating them with the UMLS knowledge sources on which SemRep crucially depends. While the process to extend SemRep coverage has been successfully applied in earlier projects, this paper presents in detail the step-wise approach we followed and the mechanisms implemented. A case study in the field of medical informatics illustrates how the ontology engineering phases have been adapted for optimal integration with the UMLS. We provide qualitative and quantitative results, which indicate the validity and usefulness of our methodology.

摘要

我们描述了一种与领域无关的方法,用于将 SemRep 的覆盖范围扩展到生物医学领域之外。SemRep 是一种最初为生物医学文本设计的自然语言处理应用程序,它使用统一医学语言系统 (UMLS©) 提供的知识源。为了支持其他领域的知识,需要对系统进行本体论和术语学扩展。我们通过为以前不受支持的领域开发语义表示来扩展 SemRep 的应用。这是通过适应著名的本体工程阶段并将其与 SemRep 严重依赖的 UMLS 知识源集成来实现的。虽然扩展 SemRep 覆盖范围的过程已在早期项目中成功应用,但本文详细介绍了我们遵循的逐步方法和实施的机制。医学信息学领域的一个案例研究说明了如何为与 UMLS 的最佳集成而调整本体工程阶段。我们提供定性和定量结果,表明我们的方法的有效性和有用性。

相似文献

1
A methodology for extending domain coverage in SemRep.一种扩展 SemRep 领域覆盖范围的方法。
J Biomed Inform. 2013 Dec;46(6):1099-107. doi: 10.1016/j.jbi.2013.08.005. Epub 2013 Aug 21.
2
Broad-coverage biomedical relation extraction with SemRep.基于 SemRep 的广谱生物医学关系抽取。
BMC Bioinformatics. 2020 May 14;21(1):188. doi: 10.1186/s12859-020-3517-7.
7
Extending SemRep to the Public Health Domain.将SemRep扩展至公共卫生领域。
J Am Soc Inf Sci Technol. 2013 Oct;64(10):1963-1974. doi: 10.1002/asi.22899.

引用本文的文献

6
Broad-coverage biomedical relation extraction with SemRep.基于 SemRep 的广谱生物医学关系抽取。
BMC Bioinformatics. 2020 May 14;21(1):188. doi: 10.1186/s12859-020-3517-7.

本文引用的文献

2
Extending SemRep to the Public Health Domain.将SemRep扩展至公共卫生领域。
J Am Soc Inf Sci Technol. 2013 Oct;64(10):1963-1974. doi: 10.1002/asi.22899.
5
Discovering discovery patterns with Predication-based Semantic Indexing.基于谓词的语义索引发现发现模式。
J Biomed Inform. 2012 Dec;45(6):1049-65. doi: 10.1016/j.jbi.2012.07.003. Epub 2012 Jul 26.
7
A four stage approach for ontology-based health information system design.基于本体的健康信息系统设计的四阶段方法。
Artif Intell Med. 2010 Nov;50(3):133-48. doi: 10.1016/j.artmed.2010.04.012. Epub 2010 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验