Suppr超能文献

在无动物源的E8限定培养基中,于贴壁和悬浮培养条件下对人诱导多能干细胞进行可扩展的扩增。

Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions.

作者信息

Wang Ying, Chou Bin-Kuan, Dowey Sarah, He Chaoxia, Gerecht Sharon, Cheng Linzhao

机构信息

Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA; Stem Cell Program, Institute of Cell Engineering, The Johns Hopkins University School of Medicine, Edward D. Miller Research Building, Room 747, 733 N. Broadway, Baltimore, MD 21205, USA; Institute for NanoBioTechnology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.

出版信息

Stem Cell Res. 2013 Nov;11(3):1103-16. doi: 10.1016/j.scr.2013.07.011. Epub 2013 Aug 9.

Abstract

Large-scale production of human induced pluripotent stem cells (hiPSCs) by robust and economic methods has been one of the major challenges for translational realization of hiPSC technology. Here we demonstrate a scalable culture system for hiPSC expansion using the E8 chemically defined and xeno-free medium under either adherent or suspension conditions. To optimize suspension conditions guided by a computational simulation, we developed a method to efficiently expand hiPSCs as undifferentiated aggregates in spinner flasks. Serial passaging of two different hiPSC lines in the spinner flasks using the E8 medium preserved their normal karyotype and expression of undifferentiated state markers of TRA-1-60, SSEA4, OCT4, and NANOG. The hiPSCs cultured in spinner flasks for more than 10 passages not only could be remained pluripotent as indicated by in vitro and in vivo assays, but also could be efficiently induced toward mesodermal and hematopoietic differentiation. Furthermore, we established a xeno-free protocol of single-cell cryopreservation and recovery for the scalable production of hiPSCs in spinner flasks. This system is the first to enable an efficient scale-up bioprocess in completely xeno-free condition for the expansion and cryopreservation of hiPSCs with the quantity and quality compliant for clinical applications.

摘要

通过稳健且经济的方法大规模生产人诱导多能干细胞(hiPSC)一直是hiPSC技术转化应用面临的主要挑战之一。在此,我们展示了一种可扩展的培养系统,用于在贴壁或悬浮条件下使用E8化学成分明确且无动物源的培养基扩增hiPSC。为了在计算模拟的指导下优化悬浮条件,我们开发了一种在转瓶中以未分化聚集体形式高效扩增hiPSC的方法。使用E8培养基在转瓶中对两种不同的hiPSC系进行连续传代,保持了它们的正常核型以及未分化状态标志物TRA-1-60、SSEA4、OCT4和NANOG的表达。在转瓶中培养超过10代的hiPSC不仅在体外和体内试验中显示仍具有多能性,而且能够高效诱导分化为中胚层和造血细胞。此外,我们建立了一种无动物源的单细胞冷冻保存和复苏方案,用于在转瓶中可扩展地生产hiPSC。该系统首次能够在完全无动物源的条件下实现高效放大生物工艺,用于扩增和冷冻保存数量和质量均符合临床应用要求的hiPSC。

相似文献

3
Scalable stirred suspension culture for the generation of billions of human induced pluripotent stem cells using single-use bioreactors.
J Tissue Eng Regen Med. 2018 Feb;12(2):e1076-e1087. doi: 10.1002/term.2435. Epub 2017 Oct 2.
4
Development and evaluation of a novel xeno-free culture medium for human-induced pluripotent stem cells.
Stem Cell Res Ther. 2022 Jun 3;13(1):223. doi: 10.1186/s13287-022-02879-z.
9
Generation of clinical-grade human induced pluripotent stem cells in Xeno-free conditions.
Stem Cell Res Ther. 2015 Nov 12;6:223. doi: 10.1186/s13287-015-0206-y.
10
Long-term self-renewal of human pluripotent stem cells on peptide-decorated poly(OEGMA-co-HEMA) brushes under fully defined conditions.
Acta Biomater. 2013 Nov;9(11):8840-50. doi: 10.1016/j.actbio.2013.07.017. Epub 2013 Jul 24.

引用本文的文献

2
Designing magnetic microcapsules for cultivation and differentiation of stem cell spheroids.
Microsyst Nanoeng. 2024 Sep 12;10(1):127. doi: 10.1038/s41378-024-00747-9.
4
Learning Towards Maturation of Defined Feeder-free Pluripotency Culture Systems: Lessons from Conventional Feeder-based Systems.
Stem Cell Rev Rep. 2024 Feb;20(2):484-494. doi: 10.1007/s12015-023-10662-7. Epub 2023 Dec 11.
6
Scalable expansion of human pluripotent stem cells under suspension culture condition with human platelet lysate supplementation.
Front Cell Dev Biol. 2023 Oct 12;11:1280682. doi: 10.3389/fcell.2023.1280682. eCollection 2023.
7
Cell Behavioral Dynamics as a Cue in Optimizing Culture Stabilization in the Bioprocessing of Pluripotent Stem Cells.
Bioengineering (Basel). 2022 Nov 9;9(11):669. doi: 10.3390/bioengineering9110669.
8
9
Epigenetic regulation of BAF60A determines efficiency of miniature swine iPSC generation.
Sci Rep. 2022 May 31;12(1):9039. doi: 10.1038/s41598-022-12919-6.

本文引用的文献

1
Microbioreactors to manipulate oxygen tension and shear stress in the microenvironment of vascular stem and progenitor cells.
Biotechnol Appl Biochem. 2012 Mar-Apr;59(2):97-105. doi: 10.1002/bab.1010. Epub 2012 Mar 27.
2
Adapting human pluripotent stem cells to high-throughput and high-content screening.
Nat Protoc. 2013 Jan;8(1):111-30. doi: 10.1038/nprot.2012.139. Epub 2012 Dec 20.
5
Bioprocess development for mass production of size-controlled human pluripotent stem cell aggregates in stirred suspension bioreactor.
Tissue Eng Part C Methods. 2012 Nov;18(11):831-51. doi: 10.1089/ten.TEC.2012.0161. Epub 2012 Jun 13.
6
Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors.
Tissue Eng Part C Methods. 2012 Oct;18(10):772-84. doi: 10.1089/ten.TEC.2011.0717. Epub 2012 Jun 4.
7
Scalable GMP compliant suspension culture system for human ES cells.
Stem Cell Res. 2012 May;8(3):388-402. doi: 10.1016/j.scr.2012.02.001. Epub 2012 Feb 22.
10
Scalable expansion of human pluripotent stem cells in suspension culture.
Nat Protoc. 2011 May;6(5):689-700. doi: 10.1038/nprot.2011.318. Epub 2011 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验