Suppr超能文献

基于递归分区的加权有偏分位数回归。

Censored quantile regression with recursive partitioning-based weights.

机构信息

Division of Biostatistics, School of Public Heath, University of Minnesota, Minneapolis, MN 55455, USA.

出版信息

Biostatistics. 2014 Jan;15(1):170-81. doi: 10.1093/biostatistics/kxt027. Epub 2013 Aug 23.

Abstract

Censored quantile regression provides a useful alternative to the Cox proportional hazards model for analyzing survival data. It directly models the conditional quantile of the survival time and hence is easy to interpret. Moreover, it relaxes the proportionality constraint on the hazard function associated with the popular Cox model and is natural for modeling heterogeneity of the data. Recently, Wang and Wang (2009. Locally weighted censored quantile regression. Journal of the American Statistical Association 103, 1117-1128) proposed a locally weighted censored quantile regression approach that allows for covariate-dependent censoring and is less restrictive than other censored quantile regression methods. However, their kernel smoothing-based weighting scheme requires all covariates to be continuous and encounters practical difficulty with even a moderate number of covariates. We propose a new weighting approach that uses recursive partitioning, e.g. survival trees, that offers greater flexibility in handling covariate-dependent censoring in moderately high dimensions and can incorporate both continuous and discrete covariates. We prove that this new weighting scheme leads to consistent estimation of the quantile regression coefficients and demonstrate its effectiveness via Monte Carlo simulations. We also illustrate the new method using a widely recognized data set from a clinical trial on primary biliary cirrhosis.

摘要

有偏分位数回归为分析生存数据提供了一种有用的替代 Cox 比例风险模型的方法。它直接对生存时间的条件分位数进行建模,因此易于解释。此外,它放宽了与流行的 Cox 模型相关的风险函数的比例约束,并且对于建模数据的异质性是自然的。最近,Wang 和 Wang(2009. 局部加权有偏分位数回归。美国统计协会杂志 103, 1117-1128)提出了一种局部加权有偏分位数回归方法,允许协变量相关的删失,并且比其他有偏分位数回归方法的限制更少。然而,他们基于核平滑的加权方案要求所有协变量都是连续的,并且即使在中等数量的协变量的情况下也会遇到实际困难。我们提出了一种新的加权方法,该方法使用递归分区,例如生存树,在适度的高维中提供了处理协变量相关删失的更大灵活性,并且可以同时包含连续和离散的协变量。我们证明了这种新的加权方案可以得到分位数回归系数的一致估计,并通过蒙特卡罗模拟证明了其有效性。我们还使用原发性胆汁性肝硬化临床试验的一个广泛认可的数据集来说明新方法。

相似文献

1
Censored quantile regression with recursive partitioning-based weights.基于递归分区的加权有偏分位数回归。
Biostatistics. 2014 Jan;15(1):170-81. doi: 10.1093/biostatistics/kxt027. Epub 2013 Aug 23.
2
Non-crossing weighted kernel quantile regression with right censored data.带右删失数据的非交叉加权核分位数回归
Lifetime Data Anal. 2016 Jan;22(1):100-21. doi: 10.1007/s10985-014-9314-8. Epub 2014 Dec 16.
9
Bayesian quantile regression for censored data.用于删失数据的贝叶斯分位数回归
Biometrics. 2013 Sep;69(3):651-60. doi: 10.1111/biom.12053. Epub 2013 Jul 11.
10
Quantile regression for recurrent gap time data.复发间隔时间数据的分位数回归
Biometrics. 2013 Jun;69(2):375-85. doi: 10.1111/biom.12010. Epub 2013 Mar 11.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验