Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands.
J Phys Chem B. 2013 Dec 12;117(49):15545-58. doi: 10.1021/jp405853j. Epub 2013 Sep 17.
Here we perform a comprehensive study of ultrafast molecular and vibrational dynamics of water confined in small reversed micelles (RMs). The molecular picture is elucidated with two-dimensional infrared (2D IR) spectroscopy of water OH stretch vibrations and molecular dynamics simulations, bridged by theoretical calculations of linear and 2D IR vibrational spectra. To investigate the effects of intermolecular coupling, experiments and modeling are performed for isotopically diluted (HDO in D2O) and undiluted (H2O) water. We put a separation of water inside RMs into two subensembles (water-bound and surfactant-bound molecules), observed by many before, on a solid theoretical basis. Water molecules fully attached to the lipid interface ("shell" water) are decoupled from one another and from the central water nanopool ("core" water). The environmental fluctuations are largely "frozen" for the shell water, while the core waters demonstrate much faster dynamics but still not as fast as in the bulk case. A substantial nanoconfinement effect on the dynamics of the core water is observed after disentanglement of the shell water contribution, which is fully confirmed by the simulations of 2D IR spectra. Current results provide new insights into interaction between biological objects like membranes or proteins with the surrounding aqueous bath, and highlight peculiarities in vibrational energy redistribution near the lipid surface.
在这里,我们对受限在小反胶束(RM)中的水的超快分子和振动动力学进行了全面研究。通过水 OH 伸缩振动的二维红外(2D IR)光谱和分子动力学模拟阐明了分子图像,通过线性和 2D IR 振动光谱的理论计算进行了连接。为了研究分子间耦合的影响,我们对同位素稀释(D2O 中的 HDO)和未稀释(H2O)水进行了实验和建模。我们将 RM 内水的分离分为两个亚集合(与脂质结合的水分子和与表面活性剂结合的水分子),这在以前的许多研究中已经观察到,现在我们将其建立在坚实的理论基础上。完全附着在脂质界面上的水分子(“壳”水)彼此以及与中心水纳米池(“核”水)解耦。对于壳水,环境波动在很大程度上“冻结”,而核水则表现出更快的动力学,但仍不如在本体情况下快。在消除壳水贡献后,观察到对核水动力学的实质性纳米约束效应,这通过 2D IR 光谱的模拟得到了完全证实。当前的结果为生物物体(如膜或蛋白质)与周围水浴之间的相互作用提供了新的见解,并强调了在脂质表面附近振动能量再分配的特殊性。