Suppr超能文献

大肠杆菌硒代半胱氨酸插入机制的摇摆解码。

Wobble decoding by the Escherichia coli selenocysteine insertion machinery.

机构信息

Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden and Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Proteomics Karolinska (PK/KI), Karolinska Institutet, Stockholm SE-171 77, Sweden.

出版信息

Nucleic Acids Res. 2013 Nov;41(21):9800-11. doi: 10.1093/nar/gkt764. Epub 2013 Aug 27.

Abstract

Selenoprotein expression in Escherichia coli redefines specific single UGA codons from translational termination to selenocysteine (Sec) insertion. This process requires the presence of a Sec Insertion Sequence (SECIS) in the mRNA, which forms a secondary structure that binds a unique Sec-specific elongation factor that catalyzes Sec insertion at the predefined UGA instead of release factor 2-mediated termination. During overproduction of recombinant selenoproteins, this process nonetheless typically results in expression of UGA-truncated products together with the production of recombinant selenoproteins. Here, we found that premature termination can be fully avoided through a SECIS-dependent Sec-mediated suppression of UGG, thereby yielding either tryptophan or Sec insertion without detectable premature truncation. The yield of recombinant selenoprotein produced with this method approached that obtained with a classical UGA codon for Sec insertion. Sec-mediated suppression of UGG thus provides a novel method for selenoprotein production, as here demonstrated with rat thioredoxin reductase. The results also reveal that the E. coli selenoprotein synthesis machinery has the inherent capability to promote wobble decoding.

摘要

硒蛋白在大肠杆菌中的表达将特定的 UGA 密码子从翻译终止重新定义为硒代半胱氨酸(Sec)插入。这个过程需要在 mRNA 中存在 Sec 插入序列(SECIS),它形成一种二级结构,与一种独特的 Sec 特异性延伸因子结合,该因子在预定义的 UGA 处催化 Sec 插入,而不是释放因子 2 介导的终止。然而,在重组硒蛋白的过量生产中,该过程通常会导致 UGA 截断产物与重组硒蛋白一起表达。在这里,我们发现通过 SECIS 依赖的 Sec 介导的 UGG 抑制,可以完全避免过早终止,从而产生色氨酸或 Sec 插入,而不会检测到过早的截断。使用这种方法生产的重组硒蛋白的产量接近使用经典 Sec 插入 UGA 密码子获得的产量。因此,Sec 介导的 UGG 抑制为硒蛋白生产提供了一种新方法,如本文用大鼠硫氧还蛋白还原酶所示。这些结果还表明,大肠杆菌硒蛋白合成机制具有促进摇摆解码的内在能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f4b/3834832/9b59c8f37cfb/gkt764s1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验