Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA.
Comput Math Methods Med. 2013;2013:650463. doi: 10.1155/2013/650463. Epub 2013 Aug 6.
This paper presents a computationally very efficient, robust, automatic tracking method that does not require any implanted fiducials for low-contrast tumors. First, it generates a set of motion hypotheses and computes corresponding feature vectors in local windows within orthogonal-axis X-ray images. Then, it fits a regression model that maps features to 3D tumor motions by minimizing geodesic distances on motion manifold. These hypotheses can be jointly generated in 3D to learn a single 3D regression model or in 2D through back projection to learn two 2D models separately. Tumor is tracked by applying regression to the consecutive image pairs while selecting optimal window size at every time. Evaluations are performed on orthogonal X-ray videos of 10 patients. Comparative experimental results demonstrate superior accuracy (~1 pixel average error) and robustness to varying imaging artifacts and noise at the same time.
本文提出了一种计算效率非常高、鲁棒性强、无需任何植入式基准的自动跟踪方法,适用于低对比度肿瘤。首先,它生成一组运动假设,并在正交轴 X 射线图像中的局部窗口中计算相应的特征向量。然后,它通过在运动流形上最小化测地线距离来拟合将特征映射到 3D 肿瘤运动的回归模型。这些假设可以在 3D 中联合生成,以学习单个 3D 回归模型,也可以通过反向投影在 2D 中生成两个 2D 模型。通过对连续的图像对应用回归,并在每次选择最佳窗口大小来跟踪肿瘤。在 10 名患者的正交 X 射线视频上进行了评估。比较实验结果表明,该方法具有优越的准确性(平均误差约为 1 像素)和对不同成像伪影和噪声的鲁棒性。