Suppr超能文献

成骨细胞驱动的骨重塑。

Osteocyte-driven bone remodeling.

机构信息

Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS5035, Indianapolis, IN, 46202, USA,

出版信息

Calcif Tissue Int. 2014 Jan;94(1):25-34. doi: 10.1007/s00223-013-9774-y. Epub 2013 Sep 4.

Abstract

Osteocytes, the most abundant cells in bone, have been long postulated to detect and respond to mechanical and hormonal stimuli and to coordinate the function of osteoblasts and osteoclasts. The discovery that the inhibitor of bone formation sclerostin is primarily expressed in osteocytes in bone and downregulated by anabolic stimuli provided a mechanism by which osteocytes influence the activity of osteoblasts. Advances of the last few years provided experimental evidence demonstrating that osteocytes also participate in the recruitment of osteoclasts and the initiation of bone remodeling. Apoptotic osteocytes trigger yet-to-be-identified signals that attract osteoclast precursors to specific areas of bone, which in turn differentiate to mature, bone-resorbing osteoclasts. Osteocytes are also the source of molecules that regulate the generation and activity of osteoclasts, such as OPG and RANKL; and genetic manipulations of the mouse genome leading to loss or gain of function or to altered expression of either molecule in osteocytes markedly affect bone resorption. This review highlights these investigations and discusses how the novel concept of osteocyte-driven bone resorption and formation impacts our understanding of the mechanisms by which current therapies control bone remodeling.

摘要

成骨细胞是骨骼中最丰富的细胞,长期以来一直被认为可以检测和响应机械和激素刺激,并协调成骨细胞和破骨细胞的功能。骨形成抑制剂骨硬化蛋白主要在骨中成骨细胞中表达,并被合成代谢刺激下调的发现,为成骨细胞影响成骨细胞活性的机制提供了依据。过去几年的进展提供了实验证据,证明成骨细胞也参与破骨细胞的募集和骨重塑的启动。凋亡的成骨细胞触发尚未确定的信号,吸引破骨细胞前体到骨的特定区域,破骨细胞前体进而分化为成熟的、骨吸收的破骨细胞。成骨细胞也是调节破骨细胞生成和活性的分子的来源,如 OPG 和 RANKL;对小鼠基因组进行遗传操作,导致成骨细胞中任一分子的功能丧失或获得、或表达改变,都显著影响骨吸收。这篇综述强调了这些研究,并讨论了成骨细胞驱动的骨吸收和形成的新概念如何影响我们对当前治疗方法控制骨重塑机制的理解。

相似文献

1
Osteocyte-driven bone remodeling.
Calcif Tissue Int. 2014 Jan;94(1):25-34. doi: 10.1007/s00223-013-9774-y. Epub 2013 Sep 4.
2
The osteocyte as a signaling cell.
Physiol Rev. 2022 Jan 1;102(1):379-410. doi: 10.1152/physrev.00043.2020. Epub 2021 Aug 2.
3
Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption-formation cycles?
Osteoporos Int. 2014 Dec;25(12):2685-700. doi: 10.1007/s00198-014-2808-0. Epub 2014 Jul 17.
4
Regulatory mechanisms of RANKL presentation to osteoclast precursors.
Curr Osteoporos Rep. 2014 Mar;12(1):115-20. doi: 10.1007/s11914-014-0189-0.
5
The role of osteocytes in targeted bone remodeling: a mathematical model.
PLoS One. 2013 May 22;8(5):e63884. doi: 10.1371/journal.pone.0063884. Print 2013.
6
Effects of PTH on osteocyte function.
Bone. 2013 Jun;54(2):250-7. doi: 10.1016/j.bone.2012.09.016. Epub 2012 Sep 24.
7
Osteocyte-Related Cytokines Regulate Osteoclast Formation and Bone Resorption.
Int J Mol Sci. 2020 Jul 21;21(14):5169. doi: 10.3390/ijms21145169.
8
The osteocyte: A multifunctional cell within the bone.
Ann Anat. 2020 Jan;227:151422. doi: 10.1016/j.aanat.2019.151422. Epub 2019 Sep 26.
9
Local Production of Osteoprotegerin by Osteoblasts Suppresses Bone Resorption.
Cell Rep. 2020 Sep 8;32(10):108052. doi: 10.1016/j.celrep.2020.108052.
10
The Osteocyte as the New Discovery of Therapeutic Options in Rare Bone Diseases.
Front Endocrinol (Lausanne). 2020 Jul 8;11:405. doi: 10.3389/fendo.2020.00405. eCollection 2020.

引用本文的文献

1
Imbalance of Bone Homeostasis Caused by Nrf2 Deficiency Leads to Bone Loss in OVX Rats.
Stem Cells Int. 2025 Aug 28;2025:7214250. doi: 10.1155/sci/7214250. eCollection 2025.
2
Partial cementocyte ablation does not reduce cellular cementum apposition in a mouse model of molar super-eruption.
Bone Rep. 2025 Aug 15;26:101873. doi: 10.1016/j.bonr.2025.101873. eCollection 2025 Sep.
5
Bone metabolism - an underappreciated player.
NPJ Metab Health Dis. 2024 Jul 1;2(1):12. doi: 10.1038/s44324-024-00010-9.
6
Effect of High Glucose and Carboxymethyl-Lysine on Osteocyte Gene Expression.
Am J Mol Biol. 2025 Apr;15(2):150-169. doi: 10.4236/ajmb.2025.152012. Epub 2025 Mar 21.
8
Mechanistic insights into bone destruction in multiple myeloma: Cellular and molecular perspectives.
J Bone Oncol. 2025 Mar 4;51:100668. doi: 10.1016/j.jbo.2025.100668. eCollection 2025 Apr.
9
Melanoma bone metastasis-induced osteocyte ferroptosis via the HIF1α-HMOX1 axis.
Bone Res. 2025 Jan 16;13(1):9. doi: 10.1038/s41413-024-00384-y.

本文引用的文献

1
RANKL subcellular trafficking and regulatory mechanisms in osteocytes.
J Bone Miner Res. 2013 Sep;28(9):1936-49. doi: 10.1002/jbmr.1941.
3
Osteocyte apoptosis.
Bone. 2013 Jun;54(2):264-71. doi: 10.1016/j.bone.2012.11.038. Epub 2012 Dec 11.
4
Beyond gap junctions: Connexin43 and bone cell signaling.
Bone. 2013 Jan;52(1):157-66. doi: 10.1016/j.bone.2012.09.030. Epub 2012 Oct 2.
5
Effects of PTH on osteocyte function.
Bone. 2013 Jun;54(2):250-7. doi: 10.1016/j.bone.2012.09.016. Epub 2012 Sep 24.
7
Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation.
J Bone Miner Res. 2012 May;27(5):1018-29. doi: 10.1002/jbmr.1567.
8
Sost downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading.
Bone. 2012 Jan;50(1):209-17. doi: 10.1016/j.bone.2011.10.025. Epub 2011 Oct 30.
10
Meox2Cre-mediated disruption of CSF-1 leads to osteopetrosis and osteocyte defects.
Bone. 2012 Jan;50(1):42-53. doi: 10.1016/j.bone.2011.09.038. Epub 2011 Sep 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验