Department of Physics and Astronomy, The University of Utah, Salt Lake City, UT 84112.
Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):E3550-6. doi: 10.1073/pnas.1307760110. Epub 2013 Sep 3.
The spectral breadth of conjugated polymers gives these materials a clear advantage over other molecular compounds for organic photovoltaic applications and is a key factor in recent efficiencies topping 10%. However, why do excitonic transitions, which are inherently narrow, lead to absorption over such a broad range of wavelengths in the first place? Using single-molecule spectroscopy, we address this fundamental question in a model material, poly(3-hexylthiophene). Narrow zero-phonon lines from single chromophores are found to scatter over 200 nm, an unprecedented inhomogeneous broadening that maps the ensemble. The giant red shift between solution and bulk films arises from energy transfer to the lowest-energy chromophores in collapsed polymer chains that adopt a highly ordered morphology. We propose that the extreme energetic disorder of chromophores is structural in origin. This structural disorder on the single-chromophore level may actually enable the high degree of polymer chain ordering found in bulk films: both structural order and disorder are crucial to materials physics in devices.
共轭聚合物的光谱带宽使这些材料在有机光伏应用方面相对于其他分子化合物具有明显的优势,这也是最近效率超过 10%的关键因素。然而,为什么原本很窄的激子跃迁首先会导致如此宽的波长范围内的吸收呢?我们使用单分子光谱法在模型材料聚(3-己基噻吩)中解决了这个基本问题。从单个发色团发现的窄零声子线会散射超过 200nm,这是前所未有的非均匀展宽,映射了整个分子。溶液和体膜之间的巨大红移源于能量转移到折叠聚合物链中能量最低的发色团,这些发色团采用高度有序的形态。我们提出,发色团的极端能量无序性源于结构。这种单发色团水平上的结构无序性实际上可能使体膜中发现的高分子链有序度达到很高的程度:结构有序和无序对于器件中的材料物理都至关重要。