Suppr超能文献

正交保护的细菌、稀有糖和 D-葡糖胺砌块的合成。

Synthesis of orthogonally protected bacterial, rare-sugar and D-glycosamine building blocks.

机构信息

Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.

出版信息

Nat Protoc. 2013 Oct;8(10):1870-89. doi: 10.1038/nprot.2013.113. Epub 2013 Sep 5.

Abstract

Bacterial glycoconjugates comprise atypical deoxy amino sugars that are not present on the human cell surface, making them good targets for drug discovery and carbohydrate-based vaccine development. Unfortunately, they cannot be isolated with sufficient purity in acceptable amounts, and therefore chemical synthesis is a crucial step toward the development of these products. Here we describe a detailed protocol for the synthesis of orthogonally protected bacterial deoxy amino hexopyranoside (2,4-diacetamido-2,4,6-trideoxyhexose (DATDH), D-bacillosamine, D-fucosamine, and 2-acetamido-4-amino-2,4,6-trideoxy-D-galactose (AAT)), D-glucosamine and D-galactosamine building blocks starting from β-D-thiophenylmannoside. Readily available β-D-thiophenylmannoside was first converted into the corresponding 2,4-diols via deoxygenation or silylation at C6, followed by O3 acylation. The 2,4-diols were converted into 2,4-bis-trifluoromethanesulfonates, which underwent highly regioselective, one-pot, double-serial and double-parallel displacements by azide, phthalimide, acetate and nitrite ions as nucleophiles. Thus, D-rhamnosyl- and D-mannosyl 2,4-diols can be efficiently transformed into various rare sugars and D-galactosamine, respectively, as orthogonally protected thioglycoside building blocks on a gram scale in 1-2 d, in 54-85% overall yields, after a single chromatographic purification. This would otherwise take 1-2 weeks. D-Glucosamine building blocks can be prepared from β-D-thiophenylmannoside in four steps via C2 displacement of triflates by azide in 2 d and in 66-70% overall yields. These procedures have been applied to the synthesis of L-serine-linked trisaccharide of Neisseria meningitidis and a rare disaccharide fragment of the zwitterionic polysaccharide (ZPS) A1 (ZPS A1) of Bacteroides fragilis.

摘要

细菌糖缀合物包含非典型的脱氧氨基糖,这些糖不在人类细胞表面,因此是药物发现和基于碳水化合物疫苗开发的良好靶点。不幸的是,它们不能以足够的纯度和可接受的量分离出来,因此化学合成是开发这些产品的关键步骤。在这里,我们描述了一种详细的从β-D-硫代苯甲苷合成正交保护的细菌脱氧氨基己吡喃糖苷(2,4-二乙酰氨基-2,4,6-三脱氧己糖(DATDH)、D-杆菌胺、D-岩藻糖胺和 2-乙酰氨基-4-氨基-2,4,6-三脱氧-D-半乳糖(AAT))、D-葡萄糖胺和 D-半乳糖胺的方法,从β-D-硫代苯甲苷开始。可直接获得的β-D-硫代苯甲苷首先通过脱氧或在 C6 位硅烷化转化为相应的 2,4-二醇,然后进行 O3 酰化。2,4-二醇转化为 2,4-双三氟甲磺酸酯,在一个锅中,通过叠氮化物、邻苯二甲酰亚胺、乙酸盐和亚硝酸盐离子作为亲核试剂进行高度区域选择性、一锅、双串联和双平行取代。因此,D-鼠李糖基和 D-甘露糖基 2,4-二醇可以分别在 1-2 天内,以 54-85%的总收率,在一个色谱纯化后,从 D-甘露糖基-和 D-甘露糖基 2,4-二醇高效转化为各种稀有糖和 D-半乳糖胺,规模达到克级。否则,这需要 1-2 周的时间。D-葡萄糖胺砌块可以从β-D-硫代苯甲苷通过 2 天内三氟甲磺酸酯的叠氮取代,以 66-70%的总收率在 4 步中制备。这些方法已应用于脑膜炎奈瑟菌 L-丝氨酸连接的三糖和脆弱拟杆菌两性多糖(ZPS)A1(ZPS A1)的罕见二糖片段的合成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验