Hôpital Cardiologique du Haut-Lévêque, CHU Bordeaux, L'Institut de rythmologie et modélisation cardiaque (LIRYC), Université Bordeaux, Bordeaux, France; Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands.
Hôpital Cardiologique du Haut-Lévêque, CHU Bordeaux, L'Institut de rythmologie et modélisation cardiaque (LIRYC), Université Bordeaux, Bordeaux, France; Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, the Netherlands.
J Am Coll Cardiol. 2013 Dec 24;62(25):2395-2403. doi: 10.1016/j.jacc.2013.08.715. Epub 2013 Sep 4.
The purpose of this study was to enhance understanding of the working mechanism of cardiac resynchronization therapy by comparing animal experimental, clinical, and computational data on the hemodynamic and electromechanical consequences of left ventricular pacing (LVP) and biventricular pacing (BiVP).
It is unclear why LVP and BiVP have comparative positive effects on hemodynamic function of patients with dyssynchronous heart failure.
Hemodynamic response to LVP and BiVP (% change in maximal rate of left ventricular pressure rise [LVdP/dtmax]) was measured in 6 dogs and 24 patients with heart failure and left bundle branch block followed by computer simulations of local myofiber mechanics during LVP and BiVP in the failing heart with left bundle branch block. Pacing-induced changes of electrical activation were measured in dogs using contact mapping and in patients using a noninvasive multielectrode electrocardiographic mapping technique.
LVP and BiVP similarly increased LVdP/dtmax in dogs and in patients, but only BiVP significantly decreased electrical dyssynchrony. In the simulations, LVP and BiVP increased total ventricular myofiber work to the same extent. While the LVP-induced increase was entirely due to enhanced right ventricular (RV) myofiber work, the BiVP-induced increase was due to enhanced myofiber work of both the left ventricle (LV) and RV. Overall, LVdP/dtmax correlated better with total ventricular myofiber work than with LV or RV myofiber work alone.
Animal experimental, clinical, and computational data support the similarity of hemodynamic response to LVP and BiVP, despite differences in electrical dyssynchrony. The simulations provide the novel insight that, through ventricular interaction, the RV myocardium importantly contributes to the improvement in LV pump function induced by cardiac resynchronization therapy.
本研究旨在通过比较左心室起搏(LVP)和双心室起搏(BiVP)对左心室压力上升最大速率(LVdP/dtmax)的血流动力学和机电后果的动物实验、临床和计算数据,来增强对心脏再同步治疗工作机制的理解。
尚不清楚为什么 LVP 和 BiVP 对心力衰竭伴不同步的患者的血流动力学功能具有相似的积极影响。
在 6 只狗和 24 例心力衰竭伴左束支传导阻滞的患者中测量 LVP 和 BiVP 的血流动力学反应(LVdP/dtmax 的最大上升速率的百分比变化),随后在左束支传导阻滞的衰竭心脏中模拟局部心肌纤维力学在 LVP 和 BiVP 期间的变化。在狗中使用接触映射测量起搏诱导的电激活变化,在患者中使用非侵入性多电极心电图映射技术测量起搏诱导的电激活变化。
LVP 和 BiVP 在狗和患者中同样增加了 LVdP/dtmax,但只有 BiVP 显著降低了电不同步。在模拟中,LVP 和 BiVP 以相同的程度增加了总心室肌纤维的工作。虽然 LVP 诱导的增加完全归因于增强的右心室(RV)肌纤维工作,但 BiVP 诱导的增加归因于左心室(LV)和 RV 的肌纤维工作的增强。总体而言,LVdP/dtmax 与总心室肌纤维工作的相关性优于与 LV 或 RV 肌纤维工作的相关性。
动物实验、临床和计算数据支持尽管存在电不同步,但 LVP 和 BiVP 的血流动力学反应具有相似性。模拟提供了新的见解,即通过心室相互作用,RV 心肌重要地促进了心脏再同步治疗诱导的 LV 泵功能的改善。