Suppr超能文献

自动确定用于椭圆拟合 MARG 校准算法的输入数据的有效性。

Automatic determination of validity of input data used in ellipsoid fitting MARG calibration algorithms.

机构信息

Department of Signal Theory, Telematics and Communications, CITIC-University of Granada, Granada, Spain.

出版信息

Sensors (Basel). 2013 Sep 5;13(9):11797-817. doi: 10.3390/s130911797.

Abstract

Ellipsoid fitting algorithms are widely used to calibrate Magnetic Angular Rate and Gravity (MARG) sensors. These algorithms are based on the minimization of an error function that optimizes the parameters of a mathematical sensor model that is subsequently applied to calibrate the raw data. The convergence of this kind of algorithms to a correct solution is very sensitive to input data. Input calibration datasets must be properly distributed in space so data can be accurately fitted to the theoretical ellipsoid model. Gathering a well distributed set is not an easy task as it is difficult for the operator carrying out the maneuvers to keep a visual record of all the positions that have already been covered, as well as the remaining ones. It would be then desirable to have a system that gives feedback to the operator when the dataset is ready, or to enable the calibration process in auto-calibrated systems. In this work, we propose two different algorithms that analyze the goodness of the distributions by computing four different indicators. The first approach is based on a thresholding algorithm that uses only one indicator as its input and the second one is based on a Fuzzy Logic System (FLS) that estimates the calibration error for a given calibration set using a weighted combination of two indicators. Very accurate classification between valid and invalid datasets is achieved with average Area Under Curve (AUC) of up to 0:98.

摘要

椭球拟合算法被广泛应用于校准磁角速度和重力(MARG)传感器。这些算法基于最小化误差函数,优化数学传感器模型的参数,然后应用于校准原始数据。这种算法对输入数据的收敛到正确的解非常敏感。输入校准数据集必须在空间中适当分布,以便可以将数据准确地拟合到理论椭球模型。收集一个分布良好的数据集并不是一件容易的事,因为操作人员在执行机动时很难记录所有已经覆盖的位置,以及剩余的位置。因此,最好有一个系统,当数据集准备好时,向操作人员提供反馈,或者在自动校准系统中启用校准过程。在这项工作中,我们提出了两种不同的算法,通过计算四个不同的指标来分析分布的好坏。第一种方法基于一个阈值算法,该算法仅使用一个指标作为输入,第二种方法基于模糊逻辑系统(FLS),该系统使用两个指标的加权组合来估计给定校准集的校准误差。通过使用两个指标的加权组合,非常准确地实现了有效和无效数据集之间的分类,平均曲线下面积(AUC)高达 0.98。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df3b/3821311/0f5eb7357bbe/sensors-13-11797f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验