Department of Physics, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel.
Nat Commun. 2013;4:2424. doi: 10.1038/ncomms3424.
In the Stern-Gerlach effect, a magnetic field gradient splits particles into spatially separated paths according to their spin projection. The idea of exploiting this effect for creating coherent momentum superpositions for matter-wave interferometry appeared shortly after its discovery, almost a century ago, but was judged to be far beyond practical reach. Here we demonstrate a viable version of this idea. Our scheme uses pulsed magnetic field gradients, generated by currents in an atom chip wire, and radio-frequency Rabi transitions between Zeeman sublevels. We transform an atomic Bose-Einstein condensate into a superposition of spatially separated propagating wavepackets and observe spatial interference fringes with a measurable phase repeatability. The method is versatile in its range of momentum transfer and the different available splitting geometries. These features make our method a good candidate for supporting a variety of future applications and fundamental studies.
在斯特恩-格拉赫效应中,磁场梯度根据粒子的自旋投影将其分裂成空间上分离的路径。大约一个世纪前,在该效应被发现后不久,人们就想到利用它来为物质波干涉创造相干动量叠加,但当时认为这远远超出了实际可行的范围。在这里,我们展示了这个想法的一个可行版本。我们的方案使用了原子芯片线上的电流产生的脉冲磁场梯度和塞曼子能级之间的射频拉比跃迁。我们将玻色-爱因斯坦凝聚体转化为空间上分离的传播波包的叠加,并观察到具有可测量相位重复性的空间干涉条纹。该方法在动量传递范围和不同可用的分裂几何形状方面具有多功能性。这些特性使我们的方法成为支持各种未来应用和基础研究的良好候选者。