Suppr超能文献

具有非均匀散焦非线性的非多项式薛定谔方程的亮孤子

Bright solitons from the nonpolynomial Schrödinger equation with inhomogeneous defocusing nonlinearities.

作者信息

Cardoso W B, Zeng J, Avelar A T, Bazeia D, Malomed B A

机构信息

Instituto de Física, Universidade Federal de Goiás, 74.001-970, Goiânia, Goiás, Brazil.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):025201. doi: 10.1103/PhysRevE.88.025201. Epub 2013 Aug 30.

Abstract

Extending the recent work on models with spatially nonuniform nonlinearities, we study bright solitons generated by the nonpolynomial self-defocusing (SDF) nonlinearity in the framework of the one-dimensional (1D) Muñoz-Mateo-Delgado (MM-D) equation (the 1D reduction of the Gross-Pitaevskii equation with the SDF nonlinearity), with the local strength of the nonlinearity growing at |x|→∞ faster than |x|. We produce numerical solutions and analytical ones, obtained by means of the Thomas-Fermi approximation, for nodeless ground states and for excited modes with one, two, three and four nodes, in two versions of the model, with steep (exponential) and mild (algebraic) nonlinear-modulation profiles. In both cases, the ground states and the single-node ones are completely stable, while the stability of the higher-order modes depends on their norm (in the case of the algebraic modulation, they are fully unstable). Unstable states spontaneously evolve into their stable lower-order counterparts.

摘要

扩展了近期关于具有空间非均匀非线性模型的研究工作,我们在一维(1D)穆尼奥斯 - 马特奥 - 德尔加多(MM - D)方程(具有非多项式自散焦(SDF)非线性的格罗斯 - 皮塔耶夫斯基方程的一维约化)框架下,研究由非多项式自散焦(SDF)非线性产生的亮孤子,其中非线性的局部强度在|x|→∞时比|x|增长得更快。我们通过托马斯 - 费米近似得到了无节点基态以及具有一、二、三、四个节点的激发模式的数值解和解析解,该模型有两个版本,分别具有陡峭(指数)和温和(代数)非线性调制轮廓。在这两种情况下,基态和单节点态是完全稳定的,而高阶模式的稳定性取决于它们的范数(在代数调制情况下,它们是完全不稳定的)。不稳定态会自发演化为其稳定的低阶对应态。

相似文献

1
Bright solitons from the nonpolynomial Schrödinger equation with inhomogeneous defocusing nonlinearities.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):025201. doi: 10.1103/PhysRevE.88.025201. Epub 2013 Aug 30.
2
Bright solitons in defocusing media with spatial modulation of the quintic nonlinearity.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Sep;86(3 Pt 2):036607. doi: 10.1103/PhysRevE.86.036607. Epub 2012 Sep 24.
3
Localized dark solitons and vortices in defocusing media with spatially inhomogeneous nonlinearity.
Phys Rev E. 2017 May;95(5-1):052214. doi: 10.1103/PhysRevE.95.052214. Epub 2017 May 24.
4
Discrete localized modes supported by an inhomogeneous defocusing nonlinearity.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Sep;88(3):032905. doi: 10.1103/PhysRevE.88.032905. Epub 2013 Sep 5.
5
Bright solitons from defocusing nonlinearities.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Sep;84(3 Pt 2):035602. doi: 10.1103/PhysRevE.84.035602. Epub 2011 Sep 19.
6
Two routes to the one-dimensional discrete nonpolynomial Schrodinger equation.
Chaos. 2009 Dec;19(4):043105. doi: 10.1063/1.3248269.
7
Stability of two-dimensional gap solitons in periodic potentials: beyond the fundamental modes.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jun;87(6):063203. doi: 10.1103/PhysRevE.87.063203. Epub 2013 Jun 24.
8
9
Solitons and vortices in two-dimensional discrete nonlinear Schrödinger systems with spatially modulated nonlinearity.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Apr;91(4):043201. doi: 10.1103/PhysRevE.91.043201. Epub 2015 Apr 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验