Cardoso W B, Zeng J, Avelar A T, Bazeia D, Malomed B A
Instituto de Física, Universidade Federal de Goiás, 74.001-970, Goiânia, Goiás, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Aug;88(2):025201. doi: 10.1103/PhysRevE.88.025201. Epub 2013 Aug 30.
Extending the recent work on models with spatially nonuniform nonlinearities, we study bright solitons generated by the nonpolynomial self-defocusing (SDF) nonlinearity in the framework of the one-dimensional (1D) Muñoz-Mateo-Delgado (MM-D) equation (the 1D reduction of the Gross-Pitaevskii equation with the SDF nonlinearity), with the local strength of the nonlinearity growing at |x|→∞ faster than |x|. We produce numerical solutions and analytical ones, obtained by means of the Thomas-Fermi approximation, for nodeless ground states and for excited modes with one, two, three and four nodes, in two versions of the model, with steep (exponential) and mild (algebraic) nonlinear-modulation profiles. In both cases, the ground states and the single-node ones are completely stable, while the stability of the higher-order modes depends on their norm (in the case of the algebraic modulation, they are fully unstable). Unstable states spontaneously evolve into their stable lower-order counterparts.
扩展了近期关于具有空间非均匀非线性模型的研究工作,我们在一维(1D)穆尼奥斯 - 马特奥 - 德尔加多(MM - D)方程(具有非多项式自散焦(SDF)非线性的格罗斯 - 皮塔耶夫斯基方程的一维约化)框架下,研究由非多项式自散焦(SDF)非线性产生的亮孤子,其中非线性的局部强度在|x|→∞时比|x|增长得更快。我们通过托马斯 - 费米近似得到了无节点基态以及具有一、二、三、四个节点的激发模式的数值解和解析解,该模型有两个版本,分别具有陡峭(指数)和温和(代数)非线性调制轮廓。在这两种情况下,基态和单节点态是完全稳定的,而高阶模式的稳定性取决于它们的范数(在代数调制情况下,它们是完全不稳定的)。不稳定态会自发演化为其稳定的低阶对应态。