Suppr超能文献

σS 被 Crl 识别所必需的关键特征,Crl 是一种促进 RNA 聚合酶全酶组装的转录因子。

Key features of σS required for specific recognition by Crl, a transcription factor promoting assembly of RNA polymerase holoenzyme.

机构信息

Department of Bacteriology and McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706.

出版信息

Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):15955-60. doi: 10.1073/pnas.1311642110. Epub 2013 Sep 16.

Abstract

Bacteria use multiple sigma factors to coordinate gene expression in response to environmental perturbations. In Escherichia coli and other γ-proteobacteria, the transcription factor Crl stimulates σ(S)-dependent transcription during times of cellular stress by promoting the association of σ(S) with core RNA polymerase. The molecular basis for specific recognition of σ(S) by Crl, rather than the homologous and more abundant primary sigma factor σ(70), is unknown. Here we use bacterial two-hybrid analysis in vivo and p-benzoyl-phenylalanine cross-linking in vitro to define the features in σ(S) responsible for specific recognition by Crl. We identify residues in σ(S) conserved domain 2 (σ(S)2) that are necessary and sufficient to allow recognition of σ(70) conserved domain 2 by Crl, one near the promoter-melting region and the other at the position where a large nonconserved region interrupts the sequence of σ(70). We then use luminescence resonance energy transfer to demonstrate directly that Crl promotes holoenzyme assembly using these specificity determinants on σ(S). Our results explain how Crl distinguishes between sigma factors that are largely homologous and activates discrete sets of promoters even though it does not bind to promoter DNA.

摘要

细菌使用多种 σ 因子来协调基因表达以响应环境干扰。在大肠杆菌和其他γ-变形菌中,转录因子 Crl 通过促进 σ(S)与核心 RNA 聚合酶的结合,在细胞应激时刺激 σ(S)依赖性转录。Crl 特异性识别 σ(S)而不是同源且更丰富的主要 σ 因子 σ(70)的分子基础尚不清楚。在这里,我们使用细菌双杂交分析体内和 p-苯甲酰苯丙氨酸交联体外来定义 σ(S)中负责 Crl 特异性识别的特征。我们确定了 σ(S)保守结构域 2(σ(S)2)中的残基,这些残基对于允许 Crl 识别 σ(70)保守结构域 2是必需和充分的,一个位于启动子融解区域附近,另一个位于大的非保守区域中断 σ(70)序列的位置。然后,我们使用发光共振能量转移直接证明 Crl 使用 σ(S)上的这些特异性决定因素促进全酶组装。我们的结果解释了 Crl 如何区分在很大程度上同源的σ 因子并激活离散的启动子集,即使它不与启动子 DNA 结合。

相似文献

1
Key features of σS required for specific recognition by Crl, a transcription factor promoting assembly of RNA polymerase holoenzyme.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):15955-60. doi: 10.1073/pnas.1311642110. Epub 2013 Sep 16.
2
Structural basis for transcription activation by Crl through tethering of σ and RNA polymerase.
Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18923-18927. doi: 10.1073/pnas.1910827116. Epub 2019 Sep 4.
5
Crl facilitates RNA polymerase holoenzyme formation.
J Bacteriol. 2006 Nov;188(22):7966-70. doi: 10.1128/JB.01266-06. Epub 2006 Sep 15.
9
Binding of the unorthodox transcription activator, Crl, to the components of the transcription machinery.
J Biol Chem. 2008 Nov 28;283(48):33455-64. doi: 10.1074/jbc.M807380200. Epub 2008 Sep 25.
10

引用本文的文献

1
A negative feedback loop is critical for recovery of RpoS after stress in Escherichia coli.
PLoS Genet. 2024 Mar 11;20(3):e1011059. doi: 10.1371/journal.pgen.1011059. eCollection 2024 Mar.
2
RpoS and the bacterial general stress response.
Microbiol Mol Biol Rev. 2024 Mar 27;88(1):e0015122. doi: 10.1128/mmbr.00151-22. Epub 2024 Feb 27.
3
A negative feedback loop is critical for recovery of RpoS after stress in .
bioRxiv. 2023 Nov 10:2023.11.09.566509. doi: 10.1101/2023.11.09.566509.
4
Effects of Global and Specific DNA-Binding Proteins on Transcriptional Regulation of the Operon.
Int J Mol Sci. 2022 Sep 7;23(18):10343. doi: 10.3390/ijms231810343.
6
Diverse and unified mechanisms of transcription initiation in bacteria.
Nat Rev Microbiol. 2021 Feb;19(2):95-109. doi: 10.1038/s41579-020-00450-2. Epub 2020 Oct 29.
7
The σ Subunit-Remodeling Factors: An Emerging Paradigms of Transcription Regulation.
Front Microbiol. 2020 Jul 29;11:1798. doi: 10.3389/fmicb.2020.01798. eCollection 2020.
9
Structural basis for transcription activation by Crl through tethering of σ and RNA polymerase.
Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18923-18927. doi: 10.1073/pnas.1910827116. Epub 2019 Sep 4.

本文引用的文献

1
The actinobacterial transcription factor RbpA binds to the principal sigma subunit of RNA polymerase.
Nucleic Acids Res. 2013 Jun;41(11):5679-91. doi: 10.1093/nar/gkt277. Epub 2013 Apr 19.
3
Structural basis of transcription initiation.
Science. 2012 Nov 23;338(6110):1076-80. doi: 10.1126/science.1227786. Epub 2012 Oct 18.
4
Chlamydia trachomatis protein GrgA activates transcription by contacting the nonconserved region of σ66.
Proc Natl Acad Sci U S A. 2012 Oct 16;109(42):16870-5. doi: 10.1073/pnas.1207300109. Epub 2012 Oct 1.
5
Structural basis for promoter-10 element recognition by the bacterial RNA polymerase σ subunit.
Cell. 2011 Dec 9;147(6):1257-69. doi: 10.1016/j.cell.2011.10.041. Epub 2011 Dec 1.
6
The RpoS-mediated general stress response in Escherichia coli.
Annu Rev Microbiol. 2011;65:189-213. doi: 10.1146/annurev-micro-090110-102946.
7
Regulation of alternative sigma factor use.
Annu Rev Microbiol. 2011;65:37-55. doi: 10.1146/annurev.micro.112408.134219.
8
Direct regulation of Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA.
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5712-7. doi: 10.1073/pnas.1019383108. Epub 2011 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验